ﻻ يوجد ملخص باللغة العربية
While the use of energy storage combined with grid-scale photovoltaic power plants continues to grow, given current lithium-ion battery prices, there remains uncertainty about the profitability of these solar-plus-storage projects. At the same time, the rapid proliferation of electric vehicles is creating a fleet of millions of lithium-ion batteries that will be deemed unsuitable for the transportation industry once they reach 80 percent of their original capacity. The repurposing and deployment of these batteries as stationary energy storage provides an opportunity to reduce the cost of solar-plus-storage systems, if the economics can be proven. We present a techno-economic model of a solar-plus-second-life energy storage project in California, including a data-based model of lithium nickel manganese cobalt oxide battery degradation, to predict its capacity fade over time, and compare it to a project that uses a new lithium-ion battery. By setting certain control policy limits, to minimize cycle aging, we show that a system with SOC limits in a 65 to 15 percent range, extends the project life to over 16 years, assuming a battery reaches its end-of-life at 60 percent of its original capacity. Under these conditions, a second-life project is more economically favorable than a project that uses a new battery and 85 to 20 percent SOC limits, for second-life battery costs that are less than 80 percent of the new battery. The same system reaches break-even and profitability for second-life battery costs that are less than 60 percent of the new battery. Our model shows that using current benchmarked data for the capital and O&M costs of solar-plus-storage systems, and a semi-empirical data-based degradation model, it is possible for EV manufacturers to sell second-life batteries for less than 60 percent of their original price to developers of profitable solar-plus-storage projects.
The control and managing of power demand and supply become very crucial because of penetration of renewables in the electricity networks and energy demand increase in residential and commercial sectors. In this paper, a new approach is presented to b
Electricity distribution networks that contain large photovoltaic solar systems can experience power flows between customers. These may create both technical and socio-economic challenges. This paper establishes how these challenges can be addressed
Submersible Buoy (SB) is an important apparatus capable of long-term, fixed-point, continuous and multi-directional measurement of acoustic signals and hydrological environment monitoring in the harsh marine environment, providing important informati
Deep decarbonization of the electricity sector can be provided by a high penetration of renewable sources such as wind, solar PV and hydro power. Flexibility from hydro and storage complements the high temporal variability of wind and solar, and tran
A fully renewable European power system comes with a variety of problems. Most of them are linked to the intermittent nature of renewable generation from the sources of wind and photovoltaics. A possible solution to balance European generation and co