ﻻ يوجد ملخص باللغة العربية
The prediction of electrical power in combined cycle power plants is a key challenge in the electrical power and energy systems field. This power output can vary depending on environmental variables, such as temperature, pressure, and humidity. Thus, the business problem is how to predict the power output as a function of these environmental conditions in order to maximize the profit. The research community has solved this problem by applying machine learning techniques and has managed to reduce the computational and time costs in comparison with the traditional thermodynamical analysis. Until now, this challenge has been tackled from a batch learning perspective in which data is assumed to be at rest, and where models do not continuously integrate new information into already constructed models. We present an approach closer to the Big Data and Internet of Things paradigms in which data is arriving continuously and where models learn incrementally, achieving significant enhancements in terms of data processing (time, memory and computational costs), and obtaining competitive performances. This work compares and examines the hourly electrical power prediction of several streaming regressors, and discusses about the best technique in terms of time processing and performance to be applied on this streaming scenario.
As the concern about climate change and energy shortage grow stronger, the incorporation of renewable energy in the power system in the future is foreseeable. In a hybrid power system with a large penetration of PV generation, PV panel is regarded as
Traditional methods for solvability region analysis can only have inner approximations with inconclusive conservatism. Machine learning methods have been proposed to approach the real region. In this letter, we propose a deep active learning framewor
In this work, we investigate differential chaos shift keying (DCSK), a communication-based waveform, in the context of wireless power transfer (WPT). Particularly, we present a DCSK-based WPT architecture, that employs an analog correlator at the rec
Deriving fast and effectively coordinated control actions remains a grand challenge affecting the secure and economic operation of todays large-scale power grid. This paper presents a novel artificial intelligence (AI) based methodology to achieve mu
Non-stationary forced oscillations (FOs) have been observed in power system operations. However, most detection methods assume that the frequency of FOs is stationary. In this paper, we present a methodology for the analysis of non-stationary FOs. Fi