ﻻ يوجد ملخص باللغة العربية
We consider the influence maximization problem (selecting $k$ seeds in a network maximizing the expected total influence) on undirected graphs under the linear threshold model. On the one hand, we prove that the greedy algorithm always achieves a $(1 - (1 - 1/k)^k + Omega(1/k^3))$-approximation, showing that the greedy algorithm does slightly better on undirected graphs than the generic $(1- (1 - 1/k)^k)$ bound which also applies to directed graphs. On the other hand, we show that substantial improvement on this bound is impossible by presenting an example where the greedy algorithm can obtain at most a $(1- (1 - 1/k)^k + O(1/k^{0.2}))$ approximation. This result stands in contrast to the previous work on the independent cascade model. Like the linear threshold model, the greedy algorithm obtains a $(1-(1-1/k)^k)$-approximation on directed graphs in the independent cascade model. However, Khanna and Lucier showed that, in undirected graphs, the greedy algorithm performs substantially better: a $(1-(1-1/k)^k + c)$ approximation for constant $c > 0$. Our results show that, surprisingly, no such improvement occurs in the linear threshold model. Finally, we show that, under the linear threshold model, the approximation ratio $(1 - (1 - 1/k)^k)$ is tight if 1) the graph is directed or 2) the vertices are weighted. In other words, under either of these two settings, the greedy algorithm cannot achieve a $(1 - (1 - 1/k)^k + f(k))$-approximation for any positive function $f(k)$. The result in setting 2) is again in a sharp contrast to Khanna and Luciers $(1 - (1 - 1/k)^k + c)$-approximation result for the independent cascade model, where the $(1 - (1 - 1/k)^k + c)$ approximation guarantee can be extended to the setting where vertices are weighted. We also discuss extensions to more generalized settings including those with edge-weighted graphs.
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network [1]; or, if immunized, would preve
Influence Maximization (IM) aims to maximize the number of people that become aware of a product by finding the `best set of `seed users to initiate the product advertisement. Unlike prior arts on static social networks containing fixed number of use
We show, assuming the Strong Exponential Time Hypothesis, that for every $varepsilon > 0$, approximating undirected unweighted Diameter on $n$-vertex $n^{1+o(1)}$-edge graphs within ratio $7/4 - varepsilon$ requires $m^{4/3 - o(1)}$ time. This is the
Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample pr
Given a directed graph (representing a social network), the influence maximization problem is to find k nodes which, when influenced (or activated), would maximize the number of remaining nodes that get activated. In this paper, we consider a more ge