ﻻ يوجد ملخص باللغة العربية
We show, assuming the Strong Exponential Time Hypothesis, that for every $varepsilon > 0$, approximating undirected unweighted Diameter on $n$-vertex $n^{1+o(1)}$-edge graphs within ratio $7/4 - varepsilon$ requires $m^{4/3 - o(1)}$ time. This is the first result that conditionally rules out a near-linear time $5/3$-approximation for undirected Diameter.
We show, assuming the Strong Exponential Time Hypothesis, that for every $varepsilon > 0$, approximating directed Diameter on $m$-arc graphs within ratio $7/4 - varepsilon$ requires $m^{4/3 - o(1)}$ time. Our construction uses nonnegative edge weight
We show that the geodesic diameter of a polygonal domain with n vertices can be computed in O(n^4 log n) time by considering O(n^3) candidate diameter endpoints; the endpoints are a subset of vertices of the overlay of shortest path maps from vertices of the domain.
Computing the convolution $Astar B$ of two length-$n$ vectors $A,B$ is an ubiquitous computational primitive. Applications range from string problems to Knapsack-type problems, and from 3SUM to All-Pairs Shortest Paths. These applications often come
We consider the influence maximization problem (selecting $k$ seeds in a network maximizing the expected total influence) on undirected graphs under the linear threshold model. On the one hand, we prove that the greedy algorithm always achieves a $(1
A natural way of increasing our understanding of NP-complete graph problems is to restrict the input to a special graph class. Classes of $H$-free graphs, that is, graphs that do not contain some graph $H$ as an induced subgraph, have proven to be an