ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal conductivity of free-standing silicon nanowire using Raman spectroscopy

77   0   0.0 ( 0 )
 نشر من قبل Satyaprakash Sahoo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low dimensional systems, nanowires, in particular, have exhibited excellent optical and electronic properties. Understanding the thermal properties in semiconductor nanowires is very important for their applications in their electronic devices. In the present study, the thermal conductivity of a freestanding silicon nanowire (NW) is estimated employing the Raman spectroscopy. The advantage of this technique is that the light source (laser) can be used both as heating and excitation source. The variations of the first-order Raman peak position of the freestanding silicon NW with respect to temperature and laser power are carried out. A critical analysis of effective laser power absorbed by exposed silicon NW, the detailed Raman study along with the concept of longitudinal heat distribution in silicon NW, the thermal conductivity of the freestanding silicon NW of 112 nm diameter is estimated to be ~53 W/m.K.



قيم البحث

اقرأ أيضاً

We investigate temperature dependent thermal conductivity k(T) in a single Ge nanowire (NW) using Optothermal Raman Spectroscopy which utilizes the temperature dependence of Raman lines as a local probe for temperature. The experiment was done from 3 00 K to above 700 K, a temperature range in which thermal conductivity of single NWs has been explored rarely. The thermal conductivity of Ge NWs (grown by vapor liquid solid mechanism), at around room temperature were observed to lie in the range 1.8 to 4.2 W/m.K for diameters between 50 to 110 nm. The thermal conductivity at a given temperature was found to follow a linear dependence on NW diameter, suggesting that the low magnitude of k(T) is determined by diffused scattering of phonons from the surface of NWs that reduces it severely from its bulk value. k(T) shows approximately 1/T behavior which arises from the Umklapp processes. The quantitative estimation of errors arising from the Optothermal measurement and methods to mitigate them has been discussed. We also suggest a quick way to estimate approximately the thermal conductivity of Ge and Si NWs using the above observations.
Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks and found coherence quality factors comparable to those fabricated with standard techniques.
This study explores the potentialities of Scanning Thermal Microscopy (SThM) technique as a tool for measuring thermal transporting properties of carbon-derived materials issued from thermal conversion of organic polymers, such as the most commonly k nown polyimide (PI), Kapton. For quantitative measurements, the Null Point SThM (NP-SThM) technique is used in order to avoid unwanted effects as the parasitic heat flows through the air and the probe cantilever. Kapton HN films were pyrolysed in an inert atmosphere at temperatures up to 1200{deg}C to produce carbon-based residues with varying degree of conversion to free sp2 disordered carbon. The thermal conductivity of carbon materials ranges from 0.2 to 2 Wm-1K-1 depending on the temperature of the carbonization process (varied between 500{deg}C and 1200{deg}C). In order to validate the applicability of NP-SThM approach to these materials, the results were compared to those obtained with the three more traditional techniques, namely photo-thermal radiometry, flash laser analysis and micro-Raman thermometry. It was found that NP SThM data are in excellent agreement with previous work using more traditional techniques. We used the NP-SThM technique to differentiate structural heterogeneities or imperfections at the surface of the pyrolysed Kapton on the basis of measured local thermal conductivity.
121 - B. Stoib , S. Filser , J. Stotzel 2014
We review the Raman shift method as a non-destructive optical tool to investigate the thermal conductivity and demonstrate the possibility to map this quantity with a micrometer resolution by studying thin film and bulk materials for thermoelectric a pplications. In this method, a focused laser beam both thermally excites a sample and undergoes Raman scattering at the excitation spot. The temperature dependence of the phonon energies measured is used as a local thermometer. We discuss that the temperature measured is an effective one and describe how the thermal conductivity is deduced from single temperature measurements to full temperature maps, with the help of analytical or numerical treatments of heat diffusion. We validate the method and its analysis on 3- and 2-dimensional single crystalline samples before applying it to more complex Si-based materials. A suspended thin mesoporous film of phosphorus-doped laser-sintered Si78Ge22 nanoparticles is investigated to extract the in-plane thermal conductivity from the effective temperatures, measured as a function of the distance to the heat sink. Using an iterative multigrid Gauss-Seidel algorithm the experimental data can be modelled yielding a thermal conductivity of 0.1 W/m K after normalizing by the porosity. As a second application we map the surface of a phosphorus-doped 3-dimensional bulk-nanocrystalline Si sample which exhibits anisotropic and oxygen-rich precipitates. Thermal conductivities as low as 11 W/m K are found in the regions of the precipitates, significantly lower than the 17 W/m K in the surrounding matrix. The present work serves as a basis to more routinely use the Raman shift method as a versatile tool for thermal conductivity investigations, both for samples with high and low thermal conductivity and in a variety of geometries.
We report on fabrication and characterization of ultra-thin suspended single crystalline flat silicon membranes with thickness down to 6 nm. We have developed a method to control the strain in the membranes by adding a strain compensating frame on th e silicon membrane perimeter to avoid buckling of the released membranes. We show that by changing the properties of the frame the strain of the membrane can be tuned in controlled manner. Consequently, both the mechanical properties and the band structure can be engineered and the resulting membranes provide a unique laboratory to study low-dimensional electronic, photonic and phononic phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا