ﻻ يوجد ملخص باللغة العربية
It has been suggested a long time ago by W. Bardeen that non-vanishing of the one-loop same helicity YM amplitudes, in particular such an amplitude at four points, should be interpreted as an anomaly. However, the available derivations of these amplitudes are rather far from supporting this interpretation in that they share no similarity whatsoever with the standard triangle diagram chiral anomaly calculation. We provide a new computation of the same helicity four-point amplitude by a method designed to mimic the chiral anomaly derivation. This is done by using the momentum conservation to rewrite the logarithmically divergent four-point amplitude as a sum of linearly and then quadratically divergent integrals. These integrals are then seen to vanish after appropriate shifts of the loop momentum integration variable. The amplitude thus gets related to shifts, and these are computed in the standard textbook way. We thus reproduce the usual result but by a method which greatly strengthens the case for an anomaly interpretation of these amplitudes.
I describe a procedure by which one can transform scattering amplitudes computed in the four dimensional helicity scheme into properly renormalized amplitudes in the t Hooft-Veltman scheme. I describe a new renormalization program, based upon that of
In this final part of a series of three papers, we will assemble supersymmetric expressions for one-loop correlators in pure-spinor superspace that are BRST invariant, local, and single valued. A key driving force in this construction is the generali
Using the method of maximal cuts, we obtain a form of the three-loop four-point scattering amplitude of N=8 supergravity in which all ultraviolet cancellations are made manifest. The Feynman loop integrals that appear have a graphical representation
We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the
We consider the one-loop five-graviton amplitude in type II string theory calculated in the light-cone gauge. Although it is not possible to explicitly evaluate the integrals over the positions of the vertex operators, a low-energy expansion can be o