ترغب بنشر مسار تعليمي؟ اضغط هنا

The One-Loop Five-Graviton Amplitude and the Effective Action

151   0   0.0 ( 0 )
 نشر من قبل David Richards
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف David M. Richards




اسأل ChatGPT حول البحث

We consider the one-loop five-graviton amplitude in type II string theory calculated in the light-cone gauge. Although it is not possible to explicitly evaluate the integrals over the positions of the vertex operators, a low-energy expansion can be obtained, which can then be used to infer terms in the low-energy effective action. After subtracting diagrams due to known D^{2n}R^4 terms, we show the absence of one-loop R^5 and D^2R^5 terms and determine the exact structure of the one-loop D^4R^5 terms where, interestingly, the coefficient in front of the D^4R^5 terms is identical to the coefficient in front of the D^6R^4 term. Finally, we show that, up to D^6R^4 ~ D^4R^5, the epsilon_{10} terms package together with the t_8 terms in the usual combination (t_8t_8pm{1/8}epsilon_{10}epsilon_{10}).



قيم البحث

اقرأ أيضاً

Recent development of path integral matching techniques based on the covariant derivative expansion has made manifest a universal structure of one-loop effective Lagrangians. The universal terms can be computed once and for all to serve as a referenc e for one-loop matching calculations and to ease their automation. Here we present the fermionic universal one-loop effective action (UOLEA), resulting from integrating out heavy fermions with scalar, pseudo-scalar, vector and axial-vector couplings. We also clarify the relation of the new terms computed here to terms previously computed in the literature and those that remain to complete the UOLEA. Our results can be readily used to efficiently obtain analytical expressions for effective operators arising from heavy fermion loops.
We review and present full detail of the Feynman diagram - based and heat-kernel method - based calculations of the simplest nonlocal form factors in the one-loop contributions of a massive scalar field. The paper has a pedagogical and introductory p urposes and is intended to help the reader in better understanding the existing literature on the subject. The functional calculations are based on the solution by Avramidi and Barvinsky & Vilkovisky for the heat kernel and are performed in curved spacetime. One of the important points is that the main structure of non-localities is the same as in the flat background.
We present a remarkable connection between the asymptotic behavior of the Riemann zeros and one-loop effective action in Euclidean scalar field theory. We show that in a two-dimensional space, the asymptotic behavior of the Fourier transform of two-p oint correlation functions fits the asymptotic distribution of the non-trivial zeros of the Riemann zeta function. We work out an explicit example, namely the non-linear sigma model in the leading order in $1/N$ expansion.
We compute the massless five-point amplitude of open superstrings using the non-minimal pure spinor formalism and obtain a simple kinematic factor in pure spinor superspace, which can be viewed as the natural extension of the kinematic factor of the massless four-point amplitude. It encodes bosonic and fermionic external states in supersymmetric form and reduces to existing bosonic amplitudes when expanded in components, therefore proving their equivalence. We also show how to compute the kinematic structures involving fermionic states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا