ﻻ يوجد ملخص باللغة العربية
ASASSN-16oh is a peculiar transient supersoft X-ray source without a mass-ejection signature in the field of the Small Magellanic Cloud. Maccarone et al. (2019) concluded that ASASSN-16oh is the first dwarf nova with supersoft X-ray that originated from an equatorial accretion belt on a white dwarf (WD). Hillman et al. (2019) proposed a thermonuclear runaway model that both the X-rays and $V$/$I$ photons are emitted from the hot WD. We calculated the same parameter models as Hillman et al.s and found that they manipulated on/off the mass-accretion, and their best fit $V$ light curves are 6 mag fainter, and decay about 10 times slower, than that of ASASSN-16oh. We propose a nova model induced by a high rate of mass accretion during a dwarf nova outburst, i.e., the X-rays originate from the surface of the hydrogen-burning WD whereas the $V/I$ photons are from the irradiated disk. Our model explains the main observational properties of ASASSN-16oh. We also obtained thermonuclear runaway models with no mass ejection for a wide range of parameters of the WD mass and mass accretion rates including both natural and forced novae in low-metal environments of $Z=0.001$ and $Z=0.0001$. They are a new type of periodic supersoft X-ray sources with no mass ejection, and also a bright transient in $V$/$I$ bands if they have a large disk. We suggest that such objects are candidates of Type Ia supernova progenitors because its mass is increasing at a very high efficiency $(sim 100 %)$.
We present a detailed study of the 2019 outburst of the cataclysmic variable V1047 Cen, which hosted a classical nova eruption in 2005. The peculiar outburst occurred 14 years after the classical nova event, lasted for more than 400 days, and reached
Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments
GK Per, a classical nova of 1901, is thought to undergo variable mass accretion on to a magnetized white dwarf (WD) in an intermediate polar system (IP). We organized a multi-mission observational campaign in the X-ray and ultraviolet (UV) energy ran
We present the result of a multi-longitude campaign on the photometric study of the dwarf nova ASASSN-18fk during its superoutburst in 2018. It was observed with 18 telescopes at 15 sites during ~70 nights within a three-month interval. Observations
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve aug