ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-mission observations of the old nova GK Per during the 2015 outburst

94   0   0.0 ( 0 )
 نشر من قبل Polina Zemko
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GK Per, a classical nova of 1901, is thought to undergo variable mass accretion on to a magnetized white dwarf (WD) in an intermediate polar system (IP). We organized a multi-mission observational campaign in the X-ray and ultraviolet (UV) energy ranges during its dwarf nova (DN) outburst in 2015 March-April. Comparing data from quiescence and near outburst, we have found that the maximum plasma temperature decreased from about 26 to 16.2+/-0.4 keV. This is consistent with the previously proposed scenario of increase in mass accretion rate while the inner radius of the magnetically disrupted accretion disc shrinks, thereby lowering the shock temperature. A NuSTAR observation also revealed a high-amplitude WD spin modulation of the very hard X-rays with a single-peaked profile, suggesting an obscuration of the lower accretion pole and an extended shock region on the WD surface. The X-ray spectrum of GK Per measured with the Swift X-Ray Telescope varied on time-scales of days and also showed a gradual increase of the soft X-ray flux below 2 keV, accompanied by a decrease of the hard flux above 2 keV. In the Chandra observation with the High Energy Transmission Gratings, we detected prominent emission lines, especially of Ne, Mg and Si, where the ratios of H-like to He-like transition for each element indicate a much lower temperature than the underlying continuum. We suggest that the X-ray emission in the 0.8-2 keV range originates from the magnetospheric boundary.

قيم البحث

اقرأ أيضاً

61 - D. Nogami , T. Kato 2002
GK Per is a unique cataclysmic variable star which has showed a nova explosion as well as dwarf nova-type outbursts, and has the intermediate-polar nature. We carried out V-band time-resolved photometry and B-band monitoring during the 1996 outburst. This outburst lasted about 60 d and is divided into three parts: the slow rise branch for 35 d, the gradual decay branch with a decay rate of 20.0 d/mag for ~16 d, and the rapid decline branch with a rate of 5.6 d/mag for ~10 d. The $B-V$ color became bluest (B-V~0.18) about 10 d before the outburst maximum, which supports an idea that the outburst in GK Per is of the inside-out type. The spin pulse, 440-s quasi periodic oscillations (QPOs), and ~5,000-s QPOs were detected in our light curve, as previously seen in X-ray and optical observations. In addition, we report the discovery of ~300-s periodicity, which is shorter than the spin period.
We report on NuSTAR observations of the Intermediate Polar GK Persei which also behaves as a Dwarf Nova. It exhibited a Dwarf Nova outburst in 2015 March-April. The object was observed in 3-79 keV X-rays with NuSTAR, once at the outburst peak, and ag ain in 2015 September during quiescence. The 5-50 keV flux during the outburst was 26 times higher than that during the quiescence. With a multi-temperature emission model and a reflection model, we derived the post-shock temperature as 19.2 +/- 0.7 keV in the outburst, and 38.5 +4.1/-3.6 keV in the quiescence. This temperature difference is considered to reflect changes in the radius at which the accreting matter, forming an accretion disk, is captured by the magnetosphere of the white dwarf (WD). Assuming that this radius scales as the power of -2/7 of the mass accretion rate, and utilizing the two temperature measurements, as well as the standard mass-radius relation of WDs, we determined the WD mass in GK Persei as 0.90 +/- 0.06 solar masses. The magnetic field is estimated as 4*10^5 G.
GK Persei (1901, the Firework Nebula) is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the shape softwar e. New imaging from the Aristarchos telescope continues to track the proper motion, extinction and structural evolution of the knots, which have been observed intermittently over several decades. We present for the first time, kinematical constraints on a large faint jet feature, that was previously detected beyond the shell boundary. These observational constraints allow for the generation of models for individual knots, interactions within knot complexes, and the jet feature. Put together, and taking into account dwarf-nova accelerated winds emanating from the central source, these data and models give a deeper insight into the GK Per nova remnant as a whole.
101 - U. Munari , S. Moretti , A. Maitan 2020
Nova Per 2018 (= V392 Per) halted the decline from maximum when it was 2mag brighter than quiescence and since 2019 has been stable at such a plateau. The ejecta have already fully diluted into the interstellar space. We obtained BVRIgrizY photometry and optical spectroscopy of V392 Per during the plateau phase and compared it with equivalent data gathered prior to the nova outburst. We find the companion star to be a G9 IV/III and the orbital period to be 3.4118 days, making V392 Per the longest known period for a classical nova. The location of V392 Per on the theoretical isochrones is intermediate between that of classical novae and novae erupting within symbiotic binaries, in a sense bridging the gap. The reddening is derived to be E(B-V)=0.72 and the fitting to isochrones returns a 3.6 Gyr age for the system and 1.35 Msun, 5.3 Rsun, and 15 Lsun for the companion. The huge Ne overabundance in the ejecta and the very fast decline from nova maximum both point to a massive white dwarf (M(WD) >= 1.1-1.2 Msun). The system is viewed close to pole-on conditions and the current plateau phase is caused by irradiation of the CS by the WD still burning at the surface.
We report on X-ray observations of the Dwarf Nova GK Persei performed by {it NuSTAR} in 2015. GK Persei, behaving also as an Intermediate Polar, exhibited a Dwarf Nova outburst in 2015 March--April. The object was observed with {sl NuSTAR} during the outburst state, and again in a quiescent state wherein the 15--50 keV flux was 33 times lower. Using a multi-temperature plasma emission and reflection model, the highest plasma temperature in the accretion column was measured as $19.7^{+1.3}_{-1.0}$~keV in outburst and $36.2^{+3.5}_{-3.2}$~keV in quiescence. The significant change of the maximum temperature is considered to reflect an accretion-induced decrease of the inner-disk radius $R_{rm in}$, where accreting gas is captured by the magnetosphere. Assuming this radius scales as $R_{rm in} propto dot{M}^{-2/7}$ where $dot{M}$ is the mass accretion rate, we obtain $R_{rm in} = 1.9 ^{+0.4}_{-0.2}~R_{rm WD}$ and $R_{rm in} = 7.4^{+2.1}_{-1.2}~R_{rm WD}$ in outburst and quiescence respectively, where $R_{rm WD}$ is the white-dwarf radius of this system. Utilising the measured temperatures and fluxes, as well as the standard mass-radius relation of white dwarfs, we estimate the white-dwarf mass as $M_{rm WD} = 0.87~pm~0.08~M_{rm odot}$ including typical systematic uncertainties by 7%. The surface magnetic field is also measured as $B sim 5 times 10^{5}$~G. These results exemplify a new X-ray method of estimating $M_{rm WD}$ and $B$ of white dwarfs by using large changes in $dot{M}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا