ترغب بنشر مسار تعليمي؟ اضغط هنا

ASASSN-18fk: A new WZ Sge-type dwarf nova with multiple rebrightenings and a new candidate for a superhumping intermediate polar

71   0   0.0 ( 0 )
 نشر من قبل Elena Pavlenko P
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the result of a multi-longitude campaign on the photometric study of the dwarf nova ASASSN-18fk during its superoutburst in 2018. It was observed with 18 telescopes at 15 sites during ~70 nights within a three-month interval. Observations covered the main outburst, six rebrightenings and 50-d decline to a near-quiescent state. We identify ASASSN-18fk as WZ Sge-type dwarf nova with multiple rebrightenings and show the evolution of the 0.06-d superhump period over all stages of the superoutburst. A strong 22-min brightness modulation that superimposed on superhumps is found during rebrightenings and decline. Some evidence of this modulation in a form of a sideband signal is detected during the very onset of the outburst. We interpret the 22-min modulation as a spin period of the white dwarf and suggest that ASASSN-18fk is a good candidate for a superhumping intermediate polar.



قيم البحث

اقرأ أيضاً

We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the super outburst plateau, it showed ordinary superhumps with a period of 0.077880(3) d and a period derivative of 10.6(1.1) $times$ 10$^{-5}$ in stage B. The orbital period ($P_{rm orb}$), which is almost identical with the period of early superhumps, is exceptionally long for a WZ Sge-type dwarf nova. The mass ratio ($q$ = $M_2/M_1$) estimated from the period of developing (stage A) superhumps is 0.166(2), which is also very large for a WZ Sge-type dwarf nova. This suggests that the 2:1 resonance can be reached in such high-$q$ systems, contrary to our expectation. Such conditions are considered to be achieved if the mass-transfer rate is much lower than those in typical SU UMa-type dwarf novae that have comparable orbital periods to ASASSN-16eg and a resultant accumulation of a large amount of matter on the disk is realized at the onset of an outburst. We examined other candidates of long-period WZ Sge-type dwarf novae for their supercycles, which are considered to reflect the mass-transfer rate, and found that V1251 Cyg and RZ Leo have longer supercycles than those of other WZ Sge-type dwarf novae. This result indicates that these long-period objects including ASASSN-16eg have a low mass-transfer rate in comparison to other WZ Sge-type dwarf novae.
84 - Taichi Kato 2019
The post-outburst rebrightening phenomenon in dwarf novae and X-ray novae is still one of the most challenging subjects for theories of accretion disks. It has been widely recognized that post-outburst rebrightenings are a key feature of WZ Sge-type dwarf novae, which predominantly have short ($lesssim$0.06 d) orbital periods. I found four post-outburst rebrightenings in ASASSN-14ho during its 2014 outburst, whose orbital period has recently measured to be exceptionally long [0.24315(10) d]. Using the formal solution of the radial velocity study in the literature, I discuss the possibility that this object can be an SU UMa-type dwarf nova near the stability border of the 3:1 resonance despite its exceptionally long orbital period. Such objects are considered to be produced if mass transfer occurs after the secondary has undergone significant nuclear evolution and they may be hidden in a significant number among dwarf novae showing multiple post-outburst rebrightenings.
We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.0 50454(2) and 0.051809(13) d, respectively. We estimated that the mass ratio of secondary to primary ($q$) is 0.0699(8) by using $P_{rm orb}$ and a superhump period $P_{rm SH}$ of stage A. ASASSN-15po [$P_{rm orb} sim$ 72.6 min] is the first DN with the orbital period between 67--76 min. Although the theoretical predicted period minimum $P_{rm min}$ of hydrogen-rich cataclysmic variables (CVs) is about 65--70 min, the observational cut-off of the orbital period distribution at 80 min implies that the period minimum is about 82 min, and the value is widely accepted. We suggest the following four possibilities: the object is (1) a theoretical period minimum object (2) a binary with a evolved secondary (3) a binary with a metal-poor (Popullation II) seconday (4) a binary which was born with a brown-dwarf donor below the period minimum.
We report on photometric observations of WZ Sge-type dwarf novae, MASTER OT J211258.65+242145.4 and MASTER OT J203749.39+552210.3 which underwent outbursts in 2012. Early superhumps were recorded in both systems. During superoutburst plateau, ordinar y superhumps with a period of 0.060291(4) d (MASTER J211258) and of 0.061307(9) d (MASTER J203749) in average were observed. MASTER J211258 and MASTER J203749 exhibited eight and more than four post-superoutburst rebrightenings, respectively. In the final part of the superoutburst, an increase in the superhump periods was seen in both systems. We have made a survey of WZ Sge-type dwarf novae with multiple rebrightenings, and confirmed that the superhump periods of WZ Sge-type dwarf novae with multiple rebrightenings were longer than those of WZ Sge-type dwarf novae without a rebrightening. Although WZ Sge-type dwarf novae with multiple rebrightenings have been thought to be the good candidates for period bouncers based on their low mass ratio (q) from inferred from the period of fully grown (stage B) superhumps, our new method using the period of growing superhumps (stage A superhumps), however, implies higher q than those expected from stage B superhumps. These q values appear to be consistent with the duration of the stage A superoutbursts, which likely reflects the growth time of the 3:1 resonance. We present a working hypothesis that the small fractional superhump excesses for stage B superhumps in these systems may be explained as a result that a higher gas pressure effect works in these systems than in ordinary SU UMa-type dwarf novae. This result leads to a new picture that WZ Sge-type dwarf novae with multiple rebrightenings and SU UMa-type dwarf novae without a rebrightening (they are not period bouncers) are located in the same place on the evolutionary track.
ASASSN-14dx showed an extraordinary outburst whose features are the small outburst amplitude (~ 2.3 mag) and long duration (> 4 years). Because we found a long observational gap of 123 d before the outburst detection, we propose that the main outburs t plateau was missed and that this outburst is just a fading tail often seen after the WZ Sge-type superoutbursts. In order to distinguish between WZ Sge and SU UMa-type dwarf novae (DNe), we investigated Gaia DR2 statistically. We applied a logistic regression model and succeeded in classifying by using absolute Gaia magnitudes $M_{G}$ and Gaia colors $G_{rm BP}-G_{rm RP}$. Our new classifier also suggests that ASASSN-14dx is the best candidate of a WZ Sge-type DN. We estimated distances from the earth of known WZ Sge stars by using Gaia DR2 parallaxes. The result indicates that ASASSN-14dx is the third nearest WZ Sge star (next to WZ Sge and V455 And), and hence the object can show the third brightest WZ Sge-type superoutburst whose maximum is $V$ = 8-9 mag.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا