ﻻ يوجد ملخص باللغة العربية
We propose self-adaptive training---a new training algorithm that dynamically corrects problematic training labels by model predictions without incurring extra computational cost---to improve generalization of deep learning for potentially corrupted training data. This problem is crucial towards robustly learning from data that are corrupted by, e.g., label noises and out-of-distribution samples. The standard empirical risk minimization (ERM) for such data, however, may easily overfit noises and thus suffers from sub-optimal performance. In this paper, we observe that model predictions can substantially benefit the training process: self-adaptive training significantly improves generalization over ERM under various levels of noises, and mitigates the overfitting issue in both natural and adversarial training. We evaluate the error-capacity curve of self-adaptive training: the test error is monotonously decreasing w.r.t. model capacity. This is in sharp contrast to the recently-discovered double-descent phenomenon in ERM which might be a result of overfitting of noises. Experiments on CIFAR and ImageNet datasets verify the effectiveness of our approach in two applications: classification with label noise and selective classification. We release our code at https://github.com/LayneH/self-adaptive-training.
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of c
We propose self-adaptive training -- a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost -- to advance both supervised and self-supervised learning of
Ordinal regression is aimed at predicting an ordinal class label. In this paper, we consider its semi-supervised formulation, in which we have unlabeled data along with ordinal-labeled data to train an ordinal regressor. There are several metrics to
Recently, invariant risk minimization (IRM) was proposed as a promising solution to address out-of-distribution (OOD) generalization. However, it is unclear when IRM should be preferred over the widely-employed empirical risk minimization (ERM) frame