ترغب بنشر مسار تعليمي؟ اضغط هنا

On Seminal HEDP Research Opportunities Enabled by Colocating Multi-Petawatt Laser with High-Density Electron Beams

189   0   0.0 ( 0 )
 نشر من قبل Sebastian Meuren
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scientific community is currently witnessing an expensive and worldwide race to achieve the highest possible light intensity. Within the next decade this effort is expected to reach nearly $10^{24},mathrm{W}/mathrm{cm^2}$ in the lab frame by focusing of 100 PW, near-infrared lasers. A major driving force behind this effort is the possibility to study strong-field vacuum breakdown and an accompanying electron-positron pair plasma via a quantum electrodynamic (QED) cascade [Edwin Cartlidge, The light fantastic, Science 359, 382 (2018)]. Whereas Europe is focusing on all-optical 10 PW-class laser facilities (e.g., Apollon and ELI), China is already planning on co-locating a 100 PW laser system with a 25 keV superconducting XFEL and thus implicitly also a high-quality electron beam [Station of Extreme Light (SEL) at the Shanghai Superintense-Ultrafast Lasers Facility (SULF)]. This white paper elucidates the seminal scientific opportunities facilitated by colliding dense, multi-GeV electron beams with multi-PW optical laser pulses. Such a multi-beam facility would enable the experimental exploration of extreme HEDP environments by generating electron-positron pair plasmas with unprecedented densities and temperatures, where the interplay between strong-field quantum and collective plasma effects becomes decisive.

قيم البحث

اقرأ أيضاً

Novel emergent phenomena are expected to occur under conditions exceeding the QED critical electric field, where the vacuum becomes unstable to electron-positron pair production. The required intensity to reach this regime, $sim10^{29},mathrm{Wcm^{-2 }}$, cannot be achieved even with the most intense lasers now being planned/constructed without a sizeable Lorentz boost provided by interactions with ultrarelativistic particles. Seeded laser-laser collisions may access this strong-field QED regime at laser intensities as low as $sim10^{24},mathrm{Wcm^{-2}}$. Counterpropagating e-beam--laser interactions exceed the QED critical field at still lower intensities ($sim10^{20},mathrm{Wcm^{-2}}$ at $sim10,mathrm{GeV}$). Novel emergent phenomena are predicted to occur in the QED plasma regime, where strong-field quantum and collective plasma effects play off one another. Here the electron beam density becomes a decisive factor. Thus, the challenge is not just to exceed the QED critical field, but to do so with high quality, approaching solid-density electron beams. Even though laser wakefield accelerators (LWFA) represent a very promising research field, conventional accelerators still provide orders of magnitude higher charge densities at energies $gtrsim10,mathrm{GeV}$. Co-location of extremely dense and highly energetic electron beams with a multi-petawatt laser system would therefore enable seminal research opportunities in high-field physics and laboratory astrophysics. This white paper elucidates the potential scientific impact of multi-beam capabilities that combine a multi-PW optical laser, high-energy/density electron beam, and high-intensity x rays and outlines how to achieve such capabilities by co-locating a 3-10 PW laser with a state-of-the-art linear accelerator.
Laser wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser wakefield accelerator driven by PW laser pulses.
An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawa tt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ~1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ~10 PW.
High-flux polarized particle beams are of critical importance for the investigation of spin-dependent processes, such as in searches of physics beyond the Standard Model, as well as for scrutinizing the structure of solids and surfaces in material sc ience. Here we demonstrate that kiloampere polarized electron beams can be produced via laser-wakefield acceleration from a gas target. A simple theoretical model for determining the electron beam polarization is presented and supported with self-consistent three-dimensional particle-in-cell simulations that incorporate the spin dynamics. By appropriately choosing the laser and gas parameters, we show that the depolarization of electrons induced by the laser-wakefield-acceleration process can be as low as 10%. Compared to currently available sources of polarized electron beams, the flux is increased by four orders of magnitude.
The dynamics and radiation of ultrarelativistic electrons in strong counterpropagating laser beams are investigated. Assuming that the particle energy is the dominant scale in the problem, an approximate solution of classical equations of motion is d erived and the characteristic features of the motion are examined. A specific regime is found with comparable strong field quantum parameters of the beams, when the electron trajectory exhibits ultrashort spike-like features, which bears great significance to the corresponding radiation properties. An analytical expression for the spectral distribution of spontaneous radiation is derived in the framework of the Baier-Katkov semiclassical approximation based on the classical trajectory. All the analytical results are further validated by exact numerical calculations. We consider a non-resonant regime of interaction, when the laser frequencies in the electron rest frame are far from each other, avoiding stimulated emission. Special attention is devoted to settings when the description of radiation via the local constant field approximation fails and to corresponding spectral features. Periodic and non-periodic regimes are considered, when lab frequencies of the laser waves are always commensurate. The sensitivity of spectra with respect to the electron beam spread, focusing and finite duration of the laser beams is explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا