ﻻ يوجد ملخص باللغة العربية
We report in this paper our numerical analysis of energy level spacing statistics for the one-dimensional spin-$1/2$ XXZ model in random on-site longitudinal magnetic fields $B_i$ ($-hleq B_ileq h$)). We concentrate on the strong disorder limit $J_{perp}<<J_z,h)$ where $J_z$ and $J_{perp}$ are the (nearest neighbor) spin interaction strength in $z$- and planar ($xy$)- directions, respectively. The system is expected to be in a many-body localized (MBL) state in this parameter regime. By analyzing the energy-level spacing statistics as a function of strength of random magnetic field $h$, energy of the many-body state $E$, the number of spin-$uparrow$ particles in the system $M=sum_i(s_i^z+{1over2})$ and the spin interaction strengths $J_z$ and $J_{perp}$, we show that there exists a small parameter region $J_zsim h$ where ergodic behaviour emerges at the middle of the many-body energy spectrum when $Msim{Nover2}$ ($N=$ length of spin chain). The emerging ergodic phase shows qualitatively different behaviour compared with the usual ergodic phase that exists in the weak-disorder limit.
Some interacting disordered many-body systems are unable to thermalize when the quenched disorder becomes larger than a threshold value. Although several properties of nonzero energy density eigenstates (in the middle of the many-body spectrum) exhib
We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. To this end we devise a heuristic way of constructing local integrals of motion of very high quality, which are added
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify
The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state