ترغب بنشر مسار تعليمي؟ اضغط هنا

Static and Radio-frequency magnetic response of high Tc Superconducting Quantum Interference Filters made by ion irradiation

164   0   0.0 ( 0 )
 نشر من قبل Jerome Lesueur
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting Quantum Interference Filters (SQIF) are promising devices for Radio- Frequency (RF) detection combining low noise, high sensitivity, large dynamic range and wide-band capabilities. Impressive progress have been made recently in the field, with SQIF based antennas and amplifiers showing interesting properties in the GHz range using the well-established Nb/AlOx technology. The possibility to extend these results to High Temperature Superconductors (HTS) is still open, and different techniques to fabricate HTS SQIFs are competing to make RF devices. We report on the DC and RF response of a High Temperature SQIF fabricated by the ion irradiation technique. It is made of 1000 Superconducting QUantum Interference Devices (SQUIDs) in series, with loop areas randomly distributed between 6 micron2 and 60 micron2. The DC transfer factor is around 450 V/T at optimal bias and temperature, and the maximum voltage swing around 2:5 mV . We show that such a SQIF detects RF signals up to 150 MHz. It presents linear characteristics for RF power spanning more than five decades, and non-linearities develop beyond PRF = -35 dBm in our set-up configuration. Second-harmonic generation has been shown to be minimum at the functioning point in the whole range of frequencies. A model has been developed which captures the essential features of the SQIF RF response.



قيم البحث

اقرأ أيضاً

Superconducting Quantum Interference Filters (SQIFs) are arrays of superconducting loops of different sizes including Josephson Junctions (JJ). For a random distribution of sizes, they present a non-periodic response to an applied magnetic field, wit h an extended linear regime and a sizable field sensitivity. Such properties make SQIFs interesting devices to detect the magnetic component of electromagnetic waves at microwave frequencies. We have used the highly scalable technique of ion irradiation to make High Tc SQUIDs and SQIFs based on commercial YBa2Cu3O7 films, and studied their properties. Both display optimum performances as a function of temperature and bias current, that can be understood in the frame of numerical simulations that we developed. The role of asymmetries and spread in JJ characteristics (routinely found in HTSc technologies) is described : ion irradiation based devices appear robust against them. We finally present results on SQIF made with 2000 SQUID in series, showing a transfer function dV/dB ~ 1000V/T .
Reproducible High Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge 1 to 5 micrometers wide is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7 film through a gold mask such as the unprotected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower dose through a 20 nm wide narrow slit opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. Non hysteretic Resistively Shunted Junction (RSJ) like behavior is observed, together with sinc Fraunhofer patterns for rectangular junctions. The IcRn product varies with temperature ; it can reach a few mV. The typical resistance ranges from 0.1 to a few ohms, and the critical current density can be as high as 30 kA/cm2. The dispersion in characteristics is very low, in the 5% to 10% range. Such nanojunctions have been used to make microSQUIDs (Superconducting Quantum Interference Device) operating at Liquid Nitrogen (LN2) temperature. They exhibit a very small asymmetry, a good sensitivity and a rather low noise. The process is easily scalable to make rather complex Josephson circuits.
The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-$T_{mathrm{c}}$ grain boundary Josephson junctions and operated in active microcoole r. The authors use the parabolic shape of the dip in the dc-voltage output around B=0 to mix emph{quadratically} two external rf-signals, at frequencies $f_{mathrm{1}}$ and $f_{mathrm{2}}$ well below the Josephson frequency $f_{mathrm{J}}$, and detect the corresponding mixing signal at $| {f_{1}-f_{2}}| $. Quadratic mixing takes also place when the SQIF is operated without magnetic shield. The experimental results are well described by a simple analytical model based on the adiabatic approximation.
We present a method for fabricating Josephson junctions and superconducting quantum interference devices (SQUIDs) which is based on the local anodization of niobium strip lines 3 to 6.5 nm-thick under the voltage-biased tip of an Atomic Force Microsc ope. Microbridge junctions and SQUID loops are obtained either by partial or total oxidation of the niobium layer. Two types of weak link geometries are fabricated : lateral constriction (Dayem bridges) and variable thickness bridges. SQUIDs based on both geometries show a modulation of the maximum Josephson current with a magnetic flux periodic with respect to the superconducting flux quantum h/2e. They persist up to 4K. The modulation shape and depth for SQUIDs based on variable thickness bridges indicate that the weak link size becomes comparable to the superconducting film coherence length which is of the order of 10nm.
We successfully exploit the parabolic shape of the dc voltage output dip around B=0 of a Superconducting Quantum Interference Filter (SQIF) to mix weak external rf signals. The two tone response of weak time harmonic electromagnetic fields has been d etected on the spectral voltage output of the SQIF at frequency f_0 = f_1 - f_2, for various frequencies f_1 and f_2 ranging from few MHz up to 20 GHz. The two tone response is a characteristic function of static magnetic field B and of bias current I_b, related to the second derivative of the dc voltage output.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا