ترغب بنشر مسار تعليمي؟ اضغط هنا

On the generation and propagation of solitary waves in integrable and non-integrable nonlinear lattices

59   0   0.0 ( 0 )
 نشر من قبل Gino Biondini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the generation and propagation of solitary waves in the context of the Hertz chain and Toda lattice, with the aim to highlight the similarities, as well as differences between these systems. We begin by discussing the kinetic and potential energy of a solitary wave in these systems, and show that under certain circumstances the kinetic and potential energy profiles in these systems (i.e., their spatial distribution) look reasonably close to each other. While this and other features, such as the connection between the amplitude and the total energy of the wave bear similarities between the two models, there are also notable differences, such as the width of the wave. We then study the dynamical behavior of these systems in response to an initial velocity impulse. For the Toda lattice, we do so by employing the inverse scattering transform, and we obtain analytically the ratio between the energy of the resulting solitary wave and the energy of the impulse, as a function of the impulse velocity; we then compare the dynamics of the Toda system to that of the Hertz system, for which the corresponding quantities are obtained through numerical simulations. In the latter system, we obtain a universality in the fraction of the energy stored in the resulting solitary traveling wave irrespectively of the size of the impulse. This fraction turns out to only depend on the nonlinear exponent. Finally, we investigate the relation between the velocity of the resulting solitary wave and the velocity of the impulse. In particular, we provide an alternative proof for the numerical scaling rule of Hertz type systems.

قيم البحث

اقرأ أيضاً

In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrodinger (DNLS) equat ion, namely the Ablowitz-Ladik (AL) model. Our model of choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. We find that rogue wave events essentially are drastically distorted even for very slight perturbations of the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist under generic perturbations of the limiting integrable case.
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbul ence enters a state characterized by a very slow evolution of statistics (the quasi-stationary state - QSS), and we concentrate on the detailed examination of the basic statistical functions in this state depending on the shape and the width of the initial spectrum. In particular, we show that the probability density function (PDF) of wavefield intensity is nearly independent of the initial spectrum and is very well approximated by a certain Bessel function representing an integral of the product of two exponential distributions. The PDF corresponds to the value of the second-order moment of intensity equal to 4, indicating enhanced generation of rogue waves. All waves of large amplitude that we have studied are very well approximated - both in space and in time - by the rational breather solutions of either the first (the Peregrine breather), or the second orders.
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schr{o}dinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonl inearity strongly dominates linear dispersive effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be divided into two distinct stages, the initial, pre-breaking stage being described by a system of interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent the observable quantities that provide new insight into statistical features of the initial stage of the IT development by exhibiting stationary probability density functions.
The stability and dynamical properties of the so-called resonant nonlinear Schrodinger (RNLS) equation, are considered. The RNLS is a variant of the nonlinear Schrodinger (NLS) equation with the addition of a perturbation used to describe wave propag ation in cold collisionless plasmas. We first examine the modulational stability of plane waves in the RNLS model, identifying the modifications of the associated conditions from the NLS case. We then move to the study of solitary waves with vanishing and nonzero boundary conditions. Interestingly the RNLS, much like the usual NLS, exhibits both dark and bright soliton solutions depending on the relative signs of dispersion and nonlinearity. The corresponding existence, stability and dynamics of these solutions are studied systematically in this work.
We present a general scheme for constructing robust excitations (soliton-like) in non-integrable multicomponent systems. By robust, we mean localised excitations that propagate with almost constant velocity and which interact cleanly with little to n o radiation. We achieve this via a reduction of these complex systems to more familiar effective chiral field-theories using perturbation techniques and the Fredholm alternative. As a specific platform, we consider the generalised multicomponent Nonlinear Schr{o}dinger Equations (MNLS) with arbitrary interaction coefficients. This non-integrable system reduces to uncoupled Korteweg-de Vries (KdV) equations, one for each sound speed of the system. This reduction then enables us to exploit the multi-soliton solutions of the KdV equation which in turn leads to the construction of soliton-like profiles for the original non-integrable system. We demonstrate that this powerful technique leads to the coherent evolution of excitations with minimal radiative loss in arbitrary non-integrable systems. These constructed coherent objects for non-integrable systems bear remarkably close resemblance to true solitons of integrable models. Although we use the ubiquitous MNLS system as a platform, our findings are a major step forward towards constructing excitations in generic continuum non-integrable systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا