ترغب بنشر مسار تعليمي؟ اضغط هنا

Bridging data science and dynamical systems theory

122   0   0.0 ( 0 )
 نشر من قبل Dimitrios Giannakis
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This short review describes mathematical techniques for statistical analysis and prediction in dynamical systems. Two problems are discussed, namely (i) the supervised learning problem of forecasting the time evolution of an observable under potentially incomplete observations at forecast initialization; and (ii) the unsupervised learning problem of identification of observables of the system with a coherent dynamical evolution. We discuss how ideas from from operator-theoretic ergodic theory combined with statistical learning theory provide an effective route to address these problems, leading to methods well-adapted to handle nonlinear dynamics, with convergence guarantees as the amount of training data increases.



قيم البحث

اقرأ أيضاً

Stochastic dynamical systems with continuous symmetries arise commonly in nature and often give rise to coherent spatio-temporal patterns. However, because of their random locations, these patterns are not well captured by current order reduction tec hniques and a large number of modes is typically necessary for an accurate solution. In this work, we introduce a new methodology for efficient order reduction of such systems by combining (i) the method of slices, a symmetry reduction tool, with (ii) any standard order reduction technique, resulting in efficient mixed symmetry-dimensionality reduction schemes. In particular, using the Dynamically Orthogonal (DO) equations in the second step, we obtain a novel nonlinear Symmetry-reduced Dynamically Orthogonal (SDO) scheme. We demonstrate the performance of the SDO scheme on stochastic solutions of the 1D Korteweg-de Vries and 2D Navier-Stokes equations.
Providing efficient and accurate parametrizations for model reduction is a key goal in many areas of science and technology. Here we present a strong link between data-driven and theoretical approaches to achieving this goal. Formal perturbation expa nsions of the Koopman operator allow us to derive general stochastic parametrizations of weakly coupled dynamical systems. Such parametrizations yield a set of stochastic integro-differential equations with explicit noise and memory kernel formulas to describe the effects of unresolved variables. We show that the perturbation expansions involved need not be truncated when the coupling is additive. The unwieldy integro-differential equations can be recast as a simpler multilevel Markovian model, and we establish an intuitive connection with a generalized Langevin equation. This connection helps setting up a parallelism between the top-down, equations-based methodology herein and the well-established empirical model reduction (EMR) methodology that has been shown to provide efficient dynamical closures to partially observed systems. Hence, our findings support, on the one hand, the physical basis and robustness of the EMR methodology and, on the other hand, illustrate the practical relevance of the perturbative expansion used for deriving the parametrizations.
We present a supervised learning method to learn the propagator map of a dynamical system from partial and noisy observations. In our computationally cheap and easy-to-implement framework a neural network consisting of random feature maps is trained sequentially by incoming observations within a data assimilation procedure. By employing Takens embedding theorem, the network is trained on delay coordinates. We show that the combination of random feature maps and data assimilation, called RAFDA, outperforms standard random feature maps for which the dynamics is learned using batch data.
Extreme weather events are simultaneously the least likely and the most impactful features of the climate system, increasingly so as climate change proceeds. Extreme events are multi-faceted, highly variable processes which can be characterized in ma ny ways: return time, worst-case severity, and predictability are all sought-after quantities for various kinds of rare events. A unifying framework is needed to define and calculate the most important quantities of interest for the purposes of near-term forecasting, long-term risk assessment, and benchmarking of reduced-order models. Here we use Transition Path Theory (TPT) for a comprehensive analysis of sudden stratospheric warming (SSW) events in a highly idealized wave-mean flow interaction system with stochastic forcing. TPT links together probabilities, dynamical behavior, and other risk metrics associated with rare events that represents their full statistical variability. At face value, fulfilling this promise demands extensive direct simulation to generate the rare event many times. Instead, we implement a highly parallel computational method that launches a large ensemble of short simulations, estimating long-timescale rare event statistics from short-term tendencies. We specifically investigate properties of SSW events including passage time distributions and large anomalies in vortex strength and heat flux. We visualize high-dimensional probability densities and currents, obtaining a nuanced picture of critical altitude-dependent interactions between waves and the mean flow that fuel SSW events. We find that TPT more faithfully captures the statistical variability between events as compared to the more conventional minimum action method.
In this paper we establish a new connection between central sets and the strong coincidence conjecture for fixed points of irreducible primitive substitutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological dynamics, constitute a special class of subsets of $ ats$ possessing strong combinatorial properties: Each central set contains arbitrarily long arithmetic progressions, and solutions to all partition regular systems of homogeneous linear equations. We give an equivalent reformulation of the strong coincidence condition in terms of central sets and minimal idempotent ultrafilters in the Stone-v{C}ech compactification $beta ats .$ This provides a new arithmetical approach to an outstanding conjecture in tiling theory, the Pisot substitution conjecture. The results in this paper rely on interactions between different areas of mathematics, some of which had not previously been directly linked: They include the general theory of combinatorics on words, abstract numeration systems, tilings, topological dynamics and the algebraic/topological properties of Stone-v{C}ech compactification of $ ats.$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا