ﻻ يوجد ملخص باللغة العربية
In this paper we establish a new connection between central sets and the strong coincidence conjecture for fixed points of irreducible primitive substitutions of Pisot type. Central sets, first introduced by Furstenberg using notions from topological dynamics, constitute a special class of subsets of $ ats$ possessing strong combinatorial properties: Each central set contains arbitrarily long arithmetic progressions, and solutions to all partition regular systems of homogeneous linear equations. We give an equivalent reformulation of the strong coincidence condition in terms of central sets and minimal idempotent ultrafilters in the Stone-v{C}ech compactification $beta ats .$ This provides a new arithmetical approach to an outstanding conjecture in tiling theory, the Pisot substitution conjecture. The results in this paper rely on interactions between different areas of mathematics, some of which had not previously been directly linked: They include the general theory of combinatorics on words, abstract numeration systems, tilings, topological dynamics and the algebraic/topological properties of Stone-v{C}ech compactification of $ ats.$
A sequential dynamical system (SDS) consists of a graph, a set of local functions and an update schedule. A linear sequential dynamical system is an SDS whose local functions are linear. In this paper, we derive an explicit closed formula for any lin
In this paper we analyze Garden-of-Eden (GoE) states and fixed points of monotone, sequential dynamical systems (SDS). For any monotone SDS and fixed update schedule, we identify a particular set of states, each state being either a GoE state or reac
Superfilters are generalized ultrafilters, which capture the underlying concept in Ramsey theoretic theorems such as van der Waerdens Theorem. We establish several properties of superfilters, which generalize both Ramseys Theorem and its variant for
Let ${mathfrak C}$ be a monster model of an arbitrary theory $T$, $bar alpha$ any tuple of bounded length of elements of ${mathfrak C}$, and $bar c$ an enumeration of all elements of ${mathfrak C}$. By $S_{bar alpha}({mathfrak C})$ denote the compact
We explore the properties of non-piecewise syndetic sets with positive upper density, which we call discordant, in countable amenable (semi)groups. Sets of this kind are involved in many questions of Ramsey theory and manifest the difference in compl