ترغب بنشر مسار تعليمي؟ اضغط هنا

Inversion symmetry of singular values and a new orbital ordering method in tensor train approximations for quantum chemistry

322   0   0.0 ( 0 )
 نشر من قبل Gero Friesecke
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tensor train approximation of electronic wave functions lies at the core of the QC-DMRG (Quantum Chemistry Density Matrix Renormalization Group) method, a recent state-of-the-art method for numerically solving the $N$-electron Schrodinger equation. It is well known that the accuracy of TT approximations is governed by the tail of the associated singular values, which in turn strongly depends on the ordering of the one-body basis. Here we find that the singular values $s_1ge s_2ge ... ge s_d$ of tensors representing ground states of noninteracting Hamiltonians possess a surprising inversion symmetry, $s_1s_d=s_2s_{d-1}=s_3s_{d-2}=...$, thus reducing the tail behaviour to a single hidden invariant, which moreover depends explicitly on the ordering of the basis. For correlated wavefunctions, we find that the tail is upper bounded by a suitable superposition of the invariants. Optimizing the invariants or their superposition thus provides a new ordering scheme for QC-DMRG. Numerical tests on simple examples, i.e. linear combinations of a few Slater determinants, show that the new scheme reduces the tail of the singular values by several orders of magnitudes over existing methods, including the widely used Fiedler order.



قيم البحث

اقرأ أيضاً

The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor k we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors representation. In particular we present and analyze a randomized algorithm for the calculation of the hierarchical SVD (HSVD) for the tensor train (TT) format.
Low-rank tensors are an established framework for high-dimensional least-squares problems. We propose to extend this framework by including the concept of block-sparsity. In the context of polynomial regression each sparsity pattern corresponds to so me subspace of homogeneous multivariate polynomials. This allows us to adapt the ansatz space to align better with known sample complexity results. The resulting method is tested in numerical experiments and demonstrates improved computational resource utilization and sample efficiency.
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the cores) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to $100$, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.
We develop K$omega$, an open-source linear algebra library for the shifted Krylov subspace methods. The methods solve a set of shifted linear equations $(z_k I-H)x^{(k)}=b, (k=0,1,2,...)$ for a given matrix $H$ and a vector $b$, simultaneously. The l eading order of the operational cost is the same as that for a single equation. The shift invariance of the Krylov subspace is the mathematical foundation of the shifted Krylov subspace methods. Applications in materials science are presented to demonstrate the advantages of the algorithm over the standard Krylov subspace methods such as the Lanczos method. We introduce benchmark calculations of (i) an excited (optical) spectrum and (ii) intermediate eigenvalues by the contour integral on the complex plane. In combination with the quantum lattice solver $mathcal{H} Phi$, K$omega$ can realize parallel computation of excitation spectra and intermediate eigenvalues for various quantum lattice models.
New algorithms are proposed for the Tucker approximation of a 3-tensor, that access it using only the tensor-by-vector-by-vector multiplication subroutine. In the matrix case, Krylov methods are methods of choice to approximate the dominant column an d row subspaces of a sparse or structured matrix given through the matrix-by-vector multiplication subroutine. Using the Wedderburn rank reduction formula, we propose an algorithm of matrix approximation that computes Krylov subspaces and allows generalization to the tensor case. Several variants of proposed tensor algorithms differ by pivoting strategies, overall cost and quality of approximation. By convincing numerical experiments we show that the proposed methods are faster and more accurate than the minimal Krylov recursion, proposed recently by Elden and Savas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا