ﻻ يوجد ملخص باللغة العربية
We develop K$omega$, an open-source linear algebra library for the shifted Krylov subspace methods. The methods solve a set of shifted linear equations $(z_k I-H)x^{(k)}=b, (k=0,1,2,...)$ for a given matrix $H$ and a vector $b$, simultaneously. The leading order of the operational cost is the same as that for a single equation. The shift invariance of the Krylov subspace is the mathematical foundation of the shifted Krylov subspace methods. Applications in materials science are presented to demonstrate the advantages of the algorithm over the standard Krylov subspace methods such as the Lanczos method. We introduce benchmark calculations of (i) an excited (optical) spectrum and (ii) intermediate eigenvalues by the contour integral on the complex plane. In combination with the quantum lattice solver $mathcal{H} Phi$, K$omega$ can realize parallel computation of excitation spectra and intermediate eigenvalues for various quantum lattice models.
We study the use of Krylov subspace recycling for the solution of a sequence of slowly-changing families of linear systems, where each family consists of shifted linear systems that differ in the coefficient matrix only by multiples of the identity.
New algorithms are proposed for the Tucker approximation of a 3-tensor, that access it using only the tensor-by-vector-by-vector multiplication subroutine. In the matrix case, Krylov methods are methods of choice to approximate the dominant column an
Many Krylov subspace methods for shifted linear systems take advantage of the invariance of the Krylov subspace under a shift of the matrix. However, exploiting this fact in the non-Hermitian case introduces restrictions; e.g., initial residuals must
This paper presents the use of element-based algebraic multigrid (AMGe) hierarchies, implemented in the ParELAG (Parallel Element Agglomeration Algebraic Multigrid Upscaling and Solvers) library, to produce multilevel preconditioners and solvers for
We propose a new method for the approximate solution of the Lyapunov equation with rank-$1$ right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the c