ﻻ يوجد ملخص باللغة العربية
Polycrystalline Sr$_3$OsO$_6$, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 $^circ$C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr$_3$OsO$_6$ toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr$_3$OsO$_6$ films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr$_3$OsO$_6$ is under the influence of interfaces. A specific heat capacity of 39.6(9) 10$^{-3}$ J mol$^{-1}$ K$^{-2}$ is found at low temperatures ($<$17 K). This value is remarkably high, suggesting the presence of possible fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr$_3$OsO$_6$ share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.
Magnetic insulators have been intensively studied for over 100 years, and they, in particular ferrites, are considered to be the cradle of magnetic exchange interactions in solids. Their wide range of applications include microwave devices and perman
Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr$_3$SnO is a topological crystalline insulator, a new electronic phas
We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr$_{2}B$OsO$_6$ ($B={rm Fe, Y, In}$). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed
We report the observation of spin glass state in the double perovskite oxide Sr$_{2}$FeCoO$_{6}$ prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal $I 4/m$ structure with la
SrTiO$_3$ is a promising $n$-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO$_3$ doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition (PLD). The thermoelectric and galva