ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of polycrystalline bulk Sr$_3$OsO$_6$ double-perovskite insulator: comparison with 1000 K ferromagnetic epitaxial films

75   0   0.0 ( 0 )
 نشر من قبل Jie Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polycrystalline Sr$_3$OsO$_6$, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 $^circ$C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr$_3$OsO$_6$ toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr$_3$OsO$_6$ films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr$_3$OsO$_6$ is under the influence of interfaces. A specific heat capacity of 39.6(9) 10$^{-3}$ J mol$^{-1}$ K$^{-2}$ is found at low temperatures ($<$17 K). This value is remarkably high, suggesting the presence of possible fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr$_3$OsO$_6$ share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.



قيم البحث

اقرأ أيضاً

Magnetic insulators have been intensively studied for over 100 years, and they, in particular ferrites, are considered to be the cradle of magnetic exchange interactions in solids. Their wide range of applications include microwave devices and perman ent magnets . They are also suitable for spintronic devices owing to their high resistivity, low magnetic damping, and spin-dependent tunneling probabilities. The Curie temperature is the crucial factor determining the temperature range in which any ferri/ferromagnetic system remains stable. However, the record Curie temperature has stood for over eight decades in insulators and oxides (943 K for spinel ferrite LiFe5O8). Here we show that a highly B-site ordered double-perovskite, Sr2(SrOs)O6 (Sr3OsO6), surpasses this long standing Curie temperature record by more than 100 K. We revealed this B-site ordering by atomic-resolution scanning transmission electron microscopy. The density functional theory (DFT) calculations suggest that the large spin-orbit coupling (SOC) of Os6+ 5d2 orbitals drives the system toward a Jeff = 3/2 ferromagnetic (FM) insulating state. Moreover, the Sr3OsO6 is the first epitaxially grown osmate, which means it is highly compatible with device fabrication processes and thus promising for spintronic applications.
Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr$_3$SnO is a topological crystalline insulator, a new electronic phas e of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations we design and implement a deposition approach to achieve the adsorption-controlled growth of epitaxial Sr$_3$SnO single-crystal films by molecular-beam epitaxy (MBE). In-situ transport and angle-resolved photoemission spectroscopy measurements reveal the metallic and non-trivial topological nature of the as-grown samples. Compared with conventional MBE, the synthesis route used results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of topological crystalline insulators opens opportunities to manipulate topological states by tuning symmetries via epitaxial strain and heterostructuring.
We present the results of zero-field muon-spin relaxation measurements made on the double perovskite insulators Sr$_{2}B$OsO$_6$ ($B={rm Fe, Y, In}$). Spontaneous muon-spin precession indicative of quasistatic long range magnetic ordering is observed in Sr$_{2}$FeOsO$_6$ within the AF1 antiferromagnetic phase for temperatures below $T_{rm N}=135 pm 2~{rm K}$. Upon cooling below $T_2 approx 67~{rm K}$ the oscillations cease to be resolvable owing to the coexistence of the AF1 and AF2 phases, which leads to a broader range of internal magnetic fields. Using density functional calculations we identify a candidate muon stopping site within the unit cell, which dipole field simulations show to be consistent with the proposed magnetic structure. The possibility of incommensurate magnetic ordering is discussed for temperatures below $T_{rm N}=53~{rm K}$ and 25~K for Sr$_{2}$YOsO$_6$ and Sr$_{2}$InOsO$_6$, respectively.
We report the observation of spin glass state in the double perovskite oxide Sr$_{2}$FeCoO$_{6}$ prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal $I 4/m$ structure with la ttice parameters, $a$ = 5.4609(2) AA and $c$ = 7.7113(7) AA. The temperature dependent powder x ray studies reveal no structural phase transition in the temperature range 10 -- 300 K. However, the unit cell volume shows an anomaly coinciding with the magnetic transition temperature thereby suggesting a close connection between lattice and magnetism. Neutron diffraction studies and subsequent bond valence sums analysis show that in Sr$_{2}$FeCoO$_{6}$, the $B$ site is randomly occupied by Fe and Co in the mixed valence states of Fe$^{3+}$/Fe$^{4+}$ and Co$^{3+}$/Co$^{4+}$. The random occupancy and mixed valence sets the stage for inhomogeneous magnetic exchange interactions and in turn, for the spin glass like state in this double perovskite which is observed as an irreversibility in temperature dependent dc magnetization at $T_fsim$ 75 K. Thermal hysteresis observed in the magnetization profile of Sr$_{2}$FeCoO$_{6}$ is indicative of the mixed magnetic phases present. The dynamic magnetic susceptibility displays characteristic frequency dependence and confirms the spin glass nature of this material. Dynamical scaling analysis of $chi(T)$ yields a critical temperature $T_{ct}$ = 75.14(8) K and an exponent $z u$ = 6.2(2) typical for spin glasses. The signature of presence of mixed magnetic interactions is obtained from the thermal hysteresis in magnetization of Sr$_{2}$FeCoO$_{6}$. Combining the neutron and magnetization results of Sr$_2$FeCoO$_6$, we deduce the spin states of Fe to be in low spin while that of Co to be in low spin and intermediate spin.
SrTiO$_3$ is a promising $n$-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO$_3$ doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition (PLD). The thermoelectric and galva nomagnetic properties of these films have been characterized at temperatures ranging from 300 K to 900 K and are typical of a doped semiconductor. Thermopower values of double-doped films are comparable to previous studies of La doped single crystals at similar carrier concentrations. The highest thermoelectric figure of merit ($ZT$) was measured to be 0.28 at 873 K at a carrier concentration of $2.5times10^{21}$ cm$^{-3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا