ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of spin glass state in weakly ferromagnetic Sr$_2$FeCoO$_6$ double perovskite

194   0   0.0 ( 0 )
 نشر من قبل Harikrishnan Nair
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of spin glass state in the double perovskite oxide Sr$_{2}$FeCoO$_{6}$ prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal $I 4/m$ structure with lattice parameters, $a$ = 5.4609(2) AA and $c$ = 7.7113(7) AA. The temperature dependent powder x ray studies reveal no structural phase transition in the temperature range 10 -- 300 K. However, the unit cell volume shows an anomaly coinciding with the magnetic transition temperature thereby suggesting a close connection between lattice and magnetism. Neutron diffraction studies and subsequent bond valence sums analysis show that in Sr$_{2}$FeCoO$_{6}$, the $B$ site is randomly occupied by Fe and Co in the mixed valence states of Fe$^{3+}$/Fe$^{4+}$ and Co$^{3+}$/Co$^{4+}$. The random occupancy and mixed valence sets the stage for inhomogeneous magnetic exchange interactions and in turn, for the spin glass like state in this double perovskite which is observed as an irreversibility in temperature dependent dc magnetization at $T_fsim$ 75 K. Thermal hysteresis observed in the magnetization profile of Sr$_{2}$FeCoO$_{6}$ is indicative of the mixed magnetic phases present. The dynamic magnetic susceptibility displays characteristic frequency dependence and confirms the spin glass nature of this material. Dynamical scaling analysis of $chi(T)$ yields a critical temperature $T_{ct}$ = 75.14(8) K and an exponent $z u$ = 6.2(2) typical for spin glasses. The signature of presence of mixed magnetic interactions is obtained from the thermal hysteresis in magnetization of Sr$_{2}$FeCoO$_{6}$. Combining the neutron and magnetization results of Sr$_2$FeCoO$_6$, we deduce the spin states of Fe to be in low spin while that of Co to be in low spin and intermediate spin.



قيم البحث

اقرأ أيضاً

Sr$_2$CuWO$_6$ is a double perovskite proposed to be at the border between two and three dimensional magnetism, with a square lattice of $S=frac{1}{2}$ Cu$^{2+}$ ions. We have used inelastic neutron scattering to investigate the spin wave excitations of the system, to find out how they evolve as a function of temperature, as well as to obtain information about the magnetic exchange interactions. We observed well defined dispersive spin wave modes at $6$~K, which partially survive above the magnetic ordering temperature, $T_N=24$~K. Linear spin wave theory is used to determine the exchange interactions revealing them to be highly two-dimensional in nature. Density functional theory calculations are presented supporting this experimental finding, which is in contrast to a previous emph{ab-initio} study of the magnetic interactions. Our analysis confirms that not the nearest neighbour, but the next nearest neighbour interactions in the tetragonal $ab$ plane are the strongest. Low incident energy measurements reveal the opening of a $0.6(1)$~meV gap below $T_N$, which suggests the presence of a very weak single ion anisotropy term in the form of an easy axis along $hat{mathbf{a}}$.
Sr$_2$FeOsO$_6$ is an insulating double perovskite compound which undergoes antiferromagnetic transitions at 140 K ($T_{N1}$) and 67 K ($T_{N2}$). To study the underlying electronic and magnetic interactions giving rise to this behavior we have perfo rmed inelastic neutron scattering (INS) and resonant inelastic x-ray scattering (RIXS) experiments on polycrystalline samples of Sr$_2$FeOsO$_6$. The INS data reveal that the spectrum of spin excitations remains ungapped below T$_{N1}$, however below T$_{N2}$ a gap of 6.8 meV develops. The RIXS data reveals splitting of the T$_{2g}$ multiplet consistent with that seen in other 5d$^3$ osmium based double perovskites. Together these results suggest that spin-orbit coupling is important for ground state selection in 3d-5d$^3$ double perovskite materials.
135 - W. K. Zhu , J.-C. Tung , W. Tong 2016
Double-perovskite oxides that contain both 3d and 5d transition metal elements have attracted growing interest as they provide a model system to study the interplay of strong electron interaction and large spin-orbit coupling (SOC). Here, we report o n experimental and theoretical studies of the magnetic and electronic properties of double-perovskites (La$_{1-x}$Sr$_x$)$_2$CuIrO$_6$ ($x$ = 0.0, 0.1, 0.2, and 0.3). The undoped La$_2$CuIrO$_6$ undergoes a magnetic phase transition from paramagnetism to antiferromagnetism at T$_N$ $sim$ 74 K and exhibits a weak ferromagnetic behavior below $T_C$ $sim$ 52 K. Two-dimensional magnetism that was observed in many other Cu-based double-perovskites is absent in our samples, which may be due to the existence of weak Cu-Ir exchange interaction. First-principle density-functional theory (DFT) calculations show canted antiferromagnetic (AFM) order in both Cu$^{2+}$ and Ir$^{4+}$ sublattices, which gives rise to weak ferromagnetism. Electronic structure calculations suggest that La$_2$CuIrO$_6$ is an SOC-driven Mott insulator with an energy gap of $sim$ 0.3 eV. Sr-doping decreases the magnetic ordering temperatures ($T_N$ and $T_C$) and suppresses the electrical resistivity. The high temperatures resistivity can be fitted using a variable-range-hopping model, consistent with the existence of disorders in these double-pervoskite compounds.
135 - D. D. Sarma 2000
We have prepared crystallographically ordered and disorder specimens of the double perovskite, Sr$_2$FeMoO$_6$ and investigated their magnetoresistance behaviour. The extent of ordering between the Fe and Mo sites in the two samples is determined by Rietveld analysis of powder x-ray diffraction patterns and reconfirmed by M{o}ssbauer studies. While the ordered sample exhibits the sharp low-field response, followed by moderate changes in the magnetoresistance at higher fields, the disordered sample is characterised by the absence of the spectacular low-field response. We argue that the low field response depends crucially on the half-metallic ferromagnetism, while the high-field response follows from the overall magnetic nature of the sample, even in absence of the half-metallic state.
The double-perovskite A$_2$BBO$_6$ with heavy transition metal ions on the ordered B sites is an important family of compounds to study the interplay between electron correlation and spin-orbit coupling (SOC). Here we prepared high-quality Sr$_2$MgRe O$_6$ powder and single-crystal samples and performed non-resonant and resonant synchrotron x-ray diffraction experiments to investigate its magnetic ground state. By combining the magnetic susceptibility and heat capacity measurements, we conclude that Sr$_2$MgReO$_6$ exhibits a layered antiferromagnetic (AF) order at temperatures below $sim$ 55 K with a propagation vector q = (001), which contrasts the previously suspected spin glass state. Our works clarify the magnetic order in Sr$_2$MgReO$_6$ and demonstrate it as a candidate system to look for magnetic octupolar orders and exotic spin dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا