ﻻ يوجد ملخص باللغة العربية
Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr$_3$SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations we design and implement a deposition approach to achieve the adsorption-controlled growth of epitaxial Sr$_3$SnO single-crystal films by molecular-beam epitaxy (MBE). In-situ transport and angle-resolved photoemission spectroscopy measurements reveal the metallic and non-trivial topological nature of the as-grown samples. Compared with conventional MBE, the synthesis route used results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of topological crystalline insulators opens opportunities to manipulate topological states by tuning symmetries via epitaxial strain and heterostructuring.
Epitaxial thin films of (Sn$_{x}$Pb$_{1-x}$)$_{1-y}$In$_{y}$Te were successfully grown by molecular-beam-epitaxy (MBE) in a broad range of compositions (0 $leq$ x $leq$ 1, 0 $leq$ y $leq$ 0.23). We investigated electronic phases of the films by the m
We report molecular beam epitaxy growth of Sr-doped Bi$_2$Se$_3$ films on (111) BaF$_2$ substrate, aimed to realize unusual superconducting properties inherent to Sr$_x$Bi$_2$Se$_3$ single crystals. Despite wide range of the compositions, we do not a
Polycrystalline Sr$_3$OsO$_6$, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 $^circ$C and 6 GPa. The synthesis enables us to conduct a comparative
We report different growth modes and corresponding magnetic properties of thin EuSe films grown by molecular beam epitaxy on BaF2, Pb1-xEuxSe, GaAs, and Bi2Se3 substrates. We show that EuSe growth predominantly in (001) orientation on GaAs(111) and B
In the perovskite oxide SrCrO$_{3}$ the interplay between crystal structure, strain and orbital ordering enables a transition from a metallic to an insulating electronic structure under certain conditions. We identified a narrow window of oxygen part