ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme Classification via Adversarial Softmax Approximation

128   0   0.0 ( 0 )
 نشر من قبل Robert Bamler
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Training a classifier over a large number of classes, known as extreme classification, has become a topic of major interest with applications in technology, science, and e-commerce. Traditional softmax regression induces a gradient cost proportional to the number of classes $C$, which often is prohibitively expensive. A popular scalable softmax approximation relies on uniform negative sampling, which suffers from slow convergence due a poor signal-to-noise ratio. In this paper, we propose a simple training method for drastically enhancing the gradient signal by drawing negative samples from an adversarial model that mimics the data distribution. Our contributions are three-fold: (i) an adversarial sampling mechanism that produces negative samples at a cost only logarithmic in $C$, thus still resulting in cheap gradient updates; (ii) a mathematical proof that this adversarial sampling minimizes the gradient variance while any bias due to non-uniform sampling can be removed; (iii) experimental results on large scale data sets that show a reduction of the training time by an order of magnitude relative to several competitive baselines.



قيم البحث

اقرأ أيضاً

We propose an approximate strategy to efficiently train neural network based language models over very large vocabularies. Our approach, called adaptive softmax, circumvents the linear dependency on the vocabulary size by exploiting the unbalanced wo rd distribution to form clusters that explicitly minimize the expectation of computation time. Our approach further reduces the computational time by exploiting the specificities of modern architectures and matrix-matrix vector operations, making it particularly suited for graphical processing units. Our experiments carried out on standard benchmarks, such as EuroParl and One Billion Word, show that our approach brings a large gain in efficiency over standard approximations while achieving an accuracy close to that of the full softmax. The code of our method is available at https://github.com/facebookresearch/adaptive-softmax.
Partition-based methods are increasingly-used in extreme multi-label classification (XMC) problems due to their scalability to large output spaces (e.g., millions or more). However, existing methods partition the large label space into mutually exclu sive clusters, which is sub-optimal when labels have multi-modality and rich semantics. For instance, the label Apple can be the fruit or the brand name, which leads to the following research question: can we disentangle these multi-modal labels with non-exclusive clustering tailored for downstream XMC tasks? In this paper, we show that the label assignment problem in partition-based XMC can be formulated as an optimization problem, with the objective of maximizing precision rates. This leads to an efficient algorithm to form flexible and overlapped label clusters, and a method that can alternatively optimizes the cluster assignments and the model parameters for partition-based XMC. Experimental results on synthetic and real datasets show that our method can successfully disentangle multi-modal labels, leading to state-of-the-art (SOTA) results on four XMC benchmarks.
The Gumbel-Max trick is the basis of many relaxed gradient estimators. These estimators are easy to implement and low variance, but the goal of scaling them comprehensively to large combinatorial distributions is still outstanding. Working within the perturbation model framework, we introduce stochastic softmax tricks, which generalize the Gumbel-Softmax trick to combinatorial spaces. Our framework is a unified perspective on existing relaxed estimators for perturbation models, and it contains many novel relaxations. We design structured relaxations for subset selection, spanning trees, arborescences, and others. When compared to less structured baselines, we find that stochastic softmax tricks can be used to train latent variable models that perform better and discover more latent structure.
Conventional techniques for supervised classification constrain the classification rules considered and use surrogate losses for classification 0-1 loss. Favored families of classification rules are those that enjoy parametric representations suitabl e for surrogate loss minimization, and low complexity properties suitable for overfitting control. This paper presents classification techniques based on robust risk minimization (RRM) that we call linear probabilistic classifiers (LPCs). The proposed techniques consider unconstrained classification rules, optimize the classification 0-1 loss, and provide performance bounds during learning. LPCs enable efficient learning by using linear optimization, and avoid overffiting by using RRM over polyhedral uncertainty sets of distributions. We also provide finite-sample generalization bounds for LPCs and show their competitive performance with state-of-the-art techniques using benchmark datasets.
Cross-entropy loss together with softmax is arguably one of the most common used supervision components in convolutional neural networks (CNNs). Despite its simplicity, popularity and excellent performance, the component does not explicitly encourage discriminative learning of features. In this paper, we propose a generalized large-margin softmax (L-Softmax) loss which explicitly encourages intra-class compactness and inter-class separability between learned features. Moreover, L-Softmax not only can adjust the desired margin but also can avoid overfitting. We also show that the L-Softmax loss can be optimized by typical stochastic gradient descent. Extensive experiments on four benchmark datasets demonstrate that the deeply-learned features with L-softmax loss become more discriminative, hence significantly boosting the performance on a variety of visual classification and verification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا