ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Margin Softmax Loss for Convolutional Neural Networks

323   0   0.0 ( 0 )
 نشر من قبل Weiyang Liu
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-entropy loss together with softmax is arguably one of the most common used supervision components in convolutional neural networks (CNNs). Despite its simplicity, popularity and excellent performance, the component does not explicitly encourage discriminative learning of features. In this paper, we propose a generalized large-margin softmax (L-Softmax) loss which explicitly encourages intra-class compactness and inter-class separability between learned features. Moreover, L-Softmax not only can adjust the desired margin but also can avoid overfitting. We also show that the L-Softmax loss can be optimized by typical stochastic gradient descent. Extensive experiments on four benchmark datasets demonstrate that the deeply-learned features with L-softmax loss become more discriminative, hence significantly boosting the performance on a variety of visual classification and verification tasks.

قيم البحث

اقرأ أيضاً

Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representa tion in which to model and train convolutional neural networks (CNNs). We employ spectral representations to introduce a number of innovations to CNN design. First, we propose spectral pooling, which performs dimensionality reduction by truncating the representation in the frequency domain. This approach preserves considerably more information per parameter than other pooling strategies and enables flexibility in the choice of pooling output dimensionality. This representation also enables a new form of stochastic regularization by randomized modification of resolution. We show that these methods achieve competitive results on classification and approximation tasks, without using any dropout or max-pooling. Finally, we demonstrate the effectiveness of complex-coefficient spectral parameterization of convolutional filters. While this leaves the underlying model unchanged, it results in a representation that greatly facilitates optimization. We observe on a variety of popular CNN configurations that this leads to significantly faster convergence during training.
Softmax loss is arguably one of the most popular losses to train CNN models for image classification. However, recent works have exposed its limitation on feature discriminability. This paper casts a new viewpoint on the weakness of softmax loss. On the one hand, the CNN features learned using the softmax loss are often inadequately discriminative. We hence introduce a soft-margin softmax function to explicitly encourage the discrimination between different classes. On the other hand, the learned classifier of softmax loss is weak. We propose to assemble multiple these weak classifiers to a strong one, inspired by the recognition that the diversity among weak classifiers is critical to a good ensemble. To achieve the diversity, we adopt the Hilbert-Schmidt Independence Criterion (HSIC). Considering these two aspects in one framework, we design a novel loss, named as Ensemble soft-Margin Softmax (EM-Softmax). Extensive experiments on benchmark datasets are conducted to show the superiority of our design over the baseline softmax loss and several state-of-the-art alternatives.
244 - Zheng Li , Yan Liu , Lin Li 2021
This paper proposes an additive phoneme-aware margin softmax (APM-Softmax) loss to train the multi-task learning network with phonetic information for language recognition. In additive margin softmax (AM-Softmax) loss, the margin is set as a constant during the entire training for all training samples, and that is a suboptimal method since the recognition difficulty varies in training samples. In additive angular margin softmax (AAM-Softmax) loss, the additional angular margin is set as a costant as well. In this paper, we propose an APM-Softmax loss for language recognition with phoneitc multi-task learning, in which the additive phoneme-aware margin is automatically tuned for different training samples. More specifically, the margin of language recognition is adjusted according to the results of phoneme recognition. Experiments are reported on Oriental Language Recognition (OLR) datasets, and the proposed method improves AM-Softmax loss and AAM-Softmax loss in different language recognition testing conditions.
Current approaches in approximate inference for Bayesian neural networks minimise the Kullback-Leibler divergence to approximate the true posterior over the weights. However, this approximation is without knowledge of the final application, and there fore cannot guarantee optimal predictions for a given task. To make more suitable task-specific approximations, we introduce a new loss-calibrated evidence lower bound for Bayesian neural networks in the context of supervised learning, informed by Bayesian decision theory. By introducing a lower bound that depends on a utility function, we ensure that our approximation achieves higher utility than traditional methods for applications that have asymmetric utility functions. Furthermore, in using dropout inference, we highlight that our new objective is identical to that of standard dropout neural networks, with an additional utility-dependent penalty term. We demonstrate our new loss-calibrated model with an illustrative medical example and a restricted model capacity experiment, and highlight failure modes of the comparable weighted cross entropy approach. Lastly, we demonstrate the scalability of our method to real world applications with per-pixel semantic segmentation on an autonomous driving data set.
In this paper, a geometric framework for neural networks is proposed. This framework uses the inner product space structure underlying the parameter set to perform gradient descent not in a component-based form, but in a coordinate-free manner. Convo lutional neural networks are described in this framework in a compact form, with the gradients of standard --- and higher-order --- loss functions calculated for each layer of the network. This approach can be applied to other network structures and provides a basis on which to create new networks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا