ﻻ يوجد ملخص باللغة العربية
The Hall effect in SrRuO$_3$ thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional skyrmions in the film around the coercive field; however, the sign of the anomalous Hall effect in SrRuO$_3$ can change as a function of saturation magnetization. Here we report Hall peaks in SrRuO$_3$ in which volumetric magnetometry measurements and magnetic force microscopy indicate that the peaks result from the superposition of two anomalous Hall channels with opposite sign. These channels likely form due to thickness variations in SrRuO$_3$, creating two spatially separated magnetic regions with different saturation magnetizations and coercive fields. The results are central to the development of strongly correlated materials for spintronics.
In this work, the BiFeO3 (BFO)/SrRuO3 (SRO) heterostructure was fabricated and the anomalous Hall effect (AHE) was investigated the in BFO/SRO. It is found the nonmonotonic anomalous Hall resistivity behavior in BFO/SRO is originated from the inhomog
We report on the experimental observation of an anomalous Hall effect (AHE) in highly oriented pyrolytic graphite samples. The overall data indicate that the AHE in graphite can be self-consistently understood within the frameworks of the magnetic-field-driven excitonic pairing models.
We report the observation of anomalous Hall resistivity in single crystals of EuAl$_4$, a centrosymmetric tetragonal compound, which exhibits coexisting antiferromagnetic (AFM) and charge-density-wave (CDW) orders with onset at $T_mathrm{N} sim 15.6$
We present magnetotransport data on the ferrimagnet GdMn$_6$Sn$_6$. From the temperature dependent data we are able to extract a large instrinsic contribution to the anomalous Hall effect $sigma_{xz}^{int} sim$ 32 $Omega^{-1}cm^{-1}$ and $sigma_{xy}^
Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popul