ﻻ يوجد ملخص باللغة العربية
We report the observation of anomalous Hall resistivity in single crystals of EuAl$_4$, a centrosymmetric tetragonal compound, which exhibits coexisting antiferromagnetic (AFM) and charge-density-wave (CDW) orders with onset at $T_mathrm{N} sim 15.6$ K and $T_mathrm{CDW} sim 140$ K, respectively. In the AFM state, when the magnetic field is applied along the $c$-axis direction, EuAl$_4$ undergoes a series of metamagnetic transitions. Within this field range, we observe a clear hump-like anomaly in the Hall resistivity, representing part of the anomalous Hall resistivity. By considering different scenarios, we conclude that such a hump-like feature is most likely a manifestation of the topological Hall effect, normally occurring in noncentrosymmetric materials known to host nontrivial topological spin textures. In view of this, EuAl$_4$ would represent a rare case where the topological Hall effect not only arises in a centrosymmetric structure, but it also coexists with CDW order.
The Berry curvature in magnetic systems is attracting interest due to the potential tunability of topological features via the magnetic structure. $f$-electrons, with their large spin-orbit coupling, abundance of non-collinear magnetic structures and
We report on the experimental observation of an anomalous Hall effect (AHE) in highly oriented pyrolytic graphite samples. The overall data indicate that the AHE in graphite can be self-consistently understood within the frameworks of the magnetic-field-driven excitonic pairing models.
The Hall effect in SrRuO$_3$ thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional sk
The anomalous Hall effect (AHE), a Hall signal occurring without an external magnetic field, is one of the most significant phenomena. However, understanding the AHE mechanism has been challenging and largely restricted to ferromagnetic metals. Here,
The intrinsic antiferromagnetic (AFM) interlayer coupling in two-dimensional magnetic topological insulator MnBi$_2$Te$_4$ places a restriction on realizing stable quantum anomalous Hall effect (QAHE) [Y. Deng et al., Science 367, 895 (2020)]. Throug