ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonvolatile ferroelectric field control of the anomalous Hall effect in BiFeO3/SrRuO3 bilayer

89   0   0.0 ( 0 )
 نشر من قبل Jun Miao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, the BiFeO3 (BFO)/SrRuO3 (SRO) heterostructure was fabricated and the anomalous Hall effect (AHE) was investigated the in BFO/SRO. It is found the nonmonotonic anomalous Hall resistivity behavior in BFO/SRO is originated from the inhomogeneous SRO layer instead of the topological Hall effect. It is surprised that the AHE in BFO/SRO structure can be manipulated by ferroelectric polarization of BFO. Moreover, an inhomogeneous phenomenological model has been applied on those structure. Furthermore, the modification of band structure in SRO under ferroelectric polarization was discussed by first principle calculation. The ferroelectric-manipulated AHE suggests a new pathway to realize nonvolatile, reversible and low energy-consuming voltage-controlled spintronic devices.



قيم البحث

اقرأ أيضاً

The Hall effect in SrRuO$_3$ thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional sk yrmions in the film around the coercive field; however, the sign of the anomalous Hall effect in SrRuO$_3$ can change as a function of saturation magnetization. Here we report Hall peaks in SrRuO$_3$ in which volumetric magnetometry measurements and magnetic force microscopy indicate that the peaks result from the superposition of two anomalous Hall channels with opposite sign. These channels likely form due to thickness variations in SrRuO$_3$, creating two spatially separated magnetic regions with different saturation magnetizations and coercive fields. The results are central to the development of strongly correlated materials for spintronics.
We report on the experimental observation of an anomalous Hall effect (AHE) in highly oriented pyrolytic graphite samples. The overall data indicate that the AHE in graphite can be self-consistently understood within the frameworks of the magnetic-field-driven excitonic pairing models.
We predict an anomalous thermal Hall effect (ATHE) mediated by photons in networks of Weyl semi-metals. Contrary to the photon thermal Hall effect in magneto-optical systems which requires the application of an external magnetic field the ATHE in a W eyl semi-metals network is an intrinsic property of these systems. Since the Weyl semi-metals can exhibit a strong nonreciprocal response in the infrared over a broad spectral range the magnitude of thermal Hall flux in these systems can be relatively large compared to the primary flux. This ATHE paves the way for a directional control of heat flux by localy tuning the magnitude of temperature field without changing the direction of temperature gradient.
395 - T. Shang , Y. Xu , D. J. Gawryluk 2020
We report the observation of anomalous Hall resistivity in single crystals of EuAl$_4$, a centrosymmetric tetragonal compound, which exhibits coexisting antiferromagnetic (AFM) and charge-density-wave (CDW) orders with onset at $T_mathrm{N} sim 15.6$ K and $T_mathrm{CDW} sim 140$ K, respectively. In the AFM state, when the magnetic field is applied along the $c$-axis direction, EuAl$_4$ undergoes a series of metamagnetic transitions. Within this field range, we observe a clear hump-like anomaly in the Hall resistivity, representing part of the anomalous Hall resistivity. By considering different scenarios, we conclude that such a hump-like feature is most likely a manifestation of the topological Hall effect, normally occurring in noncentrosymmetric materials known to host nontrivial topological spin textures. In view of this, EuAl$_4$ would represent a rare case where the topological Hall effect not only arises in a centrosymmetric structure, but it also coexists with CDW order.
We report the observation of field-induced magnetization of BiFeO3 (BFO) in an ultrathin BFO/La0.7Sr0.3MnO3 (LSMO) superlattice using polarized neutron reflectivity (PNR). Our PNR results indicate parallel alignment of magnetization across BFO/LSMO i nterfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. We observed a saturation magnetization of 110 pm 15 kA/m (~0.8 {mu}B/Fe) for ultrathin BFO layer (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell), which is much higher than the canted moment (0.03 {mu}B/Fe) in the bulk BFO. The macroscopic VSM results on superlattice clearly indicate superparamagnetic behavior typically observed in nanoparticles of manganites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا