ﻻ يوجد ملخص باللغة العربية
Adversarial training, a special case of multi-objective optimization, is an increasingly prevalent machine learning technique: some of its most notable applications include GAN-based generative modeling and self-play techniques in reinforcement learning which have been applied to complex games such as Go or Poker. In practice, a emph{single} pair of networks is typically trained in order to find an approximate equilibrium of a highly nonconcave-nonconvex adversarial problem. However, while a classic result in game theory states such an equilibrium exists in concave-convex games, there is no analogous guarantee if the payoff is nonconcave-nonconvex. Our main contribution is to provide an approximate minimax theorem for a large class of games where the players pick neural networks including WGAN, StarCraft II, and Blotto Game. Our findings rely on the fact that despite being nonconcave-nonconvex with respect to the neural networks parameters, these games are concave-convex with respect to the actual models (e.g., functions or distributions) represented by these neural networks.
Cost-based query optimizers remain one of the most important components of database management systems for analytic workloads. Though modern optimizers select plans close to optimal performance in the common case, a small number of queries are an ord
Star-formation rates (SFR) of disk galaxies strongly correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such small scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and
In an adversarial environment, a hostile player performing a task may behave like a non-hostile one in order not to reveal its identity to an opponent. To model such a scenario, we define identity concealment games: zero-sum stochastic reachability g
We use modular invariance to derive constraints on the spectrum of warped conformal field theories (WCFTs) --- nonrelativistic quantum field theories described by a chiral Virasoro and $U(1)$ Kac-Moody algebra. We focus on holographic WCFTs and inter
This paper is a `spiritual child of the 2005 lecture notes Kindergarten Quantum Mechanics, which showed how a simple, pictorial extension of Dirac notation allowed several quantum features to be easily expressed and derived, using language even a kin