ﻻ يوجد ملخص باللغة العربية
In an adversarial environment, a hostile player performing a task may behave like a non-hostile one in order not to reveal its identity to an opponent. To model such a scenario, we define identity concealment games: zero-sum stochastic reachability games with a zero-sum objective of identity concealment. To measure the identity concealment of the player, we introduce the notion of an average player. The average players policy represents the expected behavior of a non-hostile player. We show that there exists an equilibrium policy pair for every identity concealment game and give the optimality equations to synthesize an equilibrium policy pair. If the players opponent follows a non-equilibrium policy, the player can hide its identity better. For this reason, we study how the hostile player may learn the opponents policy. Since learning via exploration policies would quickly reveal the hostile players identity to the opponent, we consider the problem of learning a near-optimal policy for the hostile player using the game runs collected under the average players policy. Consequently, we propose an algorithm that provably learns a near-optimal policy and give an upper bound on the number of sample runs to be collected.
Cost-based query optimizers remain one of the most important components of database management systems for analytic workloads. Though modern optimizers select plans close to optimal performance in the common case, a small number of queries are an ord
This paper is a `spiritual child of the 2005 lecture notes Kindergarten Quantum Mechanics, which showed how a simple, pictorial extension of Dirac notation allowed several quantum features to be easily expressed and derived, using language even a kin
Adversarial training, a special case of multi-objective optimization, is an increasingly prevalent machine learning technique: some of its most notable applications include GAN-based generative modeling and self-play techniques in reinforcement learn
Star-formation rates (SFR) of disk galaxies strongly correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such small scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and
We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic risk from both stochastic state transitions (inherent to the game) and ra