ﻻ يوجد ملخص باللغة العربية
Network congestion games are a well-understood model of multi-agent strategic interactions. Despite their ubiquitous applications, it is not clear whether it is possible to design information structures to ameliorate the overall experience of the network users. We focus on Bayesian games with atomic players, where network vagaries are modeled via a (random) state of nature which determines the costs incurred by the players. A third-party entity---the sender---can observe the realized state of the network and exploit this additional information to send a signal to each player. A natural question is the following: is it possible for an informed sender to reduce the overall social cost via the strategic provision of information to players who update their beliefs rationally? The paper focuses on the problem of computing optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution. Indeed, we show that an optimal ex ante persuasive signaling scheme can be computed in polynomial time when players are symmetric and have affine cost functions. Moreover, the problem becomes NP-hard when players are asymmetric, even in non-Bayesian settings.
Congestion games are a classical type of games studied in game theory, in which n players choose a resource, and their individual cost increases with the number of other players choosing the same resource. In network congestion games (NCGs), the reso
We consider the question of whether, and in what sense, Wardrop equilibria provide a good approximation for Nash equilibria in atomic unsplittable congestion games with a large number of small players. We examine two different definitions of small pl
We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability $p_{i}in[0,1]$, independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is po
We consider a ubiquitous scenario in the Internet economy when individual decision-makers (henceforth, agents) both produce and consume information as they make strategic choices in an uncertain environment. This creates a three-way tradeoff between
The fast-growing market of autonomous vehicles, unmanned aerial vehicles, and fleets in general necessitates the design of smart and automatic navigation systems considering the stochastic latency along different paths in the traffic network. The lon