ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximation and Convergence of Large Atomic Congestion Games

141   0   0.0 ( 0 )
 نشر من قبل Marc Schr\\\"oder
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the question of whether, and in what sense, Wardrop equilibria provide a good approximation for Nash equilibria in atomic unsplittable congestion games with a large number of small players. We examine two different definitions of small players. In the first setting, we consider games where each players weight is small. We prove that when the number of players goes to infinity and their weights to zero, the random flows in all (mixed) Nash equilibria for the finite games converge in distribution to the set of Wardrop equilibria of the corresponding nonatomic limit game. In the second setting, we consider an increasing number of players with a unit weight that participate in the game with a decreasingly small probability. In this case, the Nash equilibrium flows converge in total variation towards Poisson random variables whose expected values are Wardrop equilibria of a different nonatomic game with suitably-defined costs. The latter can be viewed as symmetric equilibria in a Poisson game in the sense of Myerson, establishing a plausible connection between the Wardrop model for routing games and the stochastic fluctuations observed in real traffic. In both settings we provide explicit approximation bounds, and we study the convergence of the price of anarchy. Beyond the case of congestion games, we prove a general result on the convergence of large games with random players towards Poisson games.



قيم البحث

اقرأ أيضاً

Congestion games are a classical type of games studied in game theory, in which n players choose a resource, and their individual cost increases with the number of other players choosing the same resource. In network congestion games (NCGs), the reso urces correspond to simple paths in a graph, e.g. representing routing options from a source to a target. In this paper, we introduce a variant of NCGs, referred to as dynamic NCGs: in this setting, players take transitions synchronously, they select their next transitions dynamically, and they are charged a cost that depends on the number of players simultaneously using the same transition. We study, from a complexity perspective, standard concepts of game theory in dynamic NCGs: social optima, Nash equilibria, and subgame perfect equilibria. Our contributions are the following: the existence of a strategy profile with social cost bounded by a constant is in PSPACE and NP-hard. (Pure) Nash equilibria always exist in dynamic NCGs; the existence of a Nash equilibrium with bounded cost can be decided in EXPSPACE, and computing a witnessing strategy profile can be done in doubly-exponential time. The existence of a subgame perfect equilibrium with bounded cost can be decided in 2EXPSPACE, and a witnessing strategy profile can be computed in triply-exponential time.
In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, h armonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to nearby games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games.
We consider an atomic congestion game in which each player participates in the game with an exogenous and known probability $p_{i}in[0,1]$, independently of everybody else, or stays out and incurs no cost. We first prove that the resulting game is po tential. Then, we compute the parameterized price of anarchy to characterize the impact of demand uncertainty on the efficiency of selfish behavior. It turns out that the price of anarchy as a function of the maximum participation probability $p=max_{i} p_{i}$ is a nondecreasing function. The worst case is attained when players have the same participation probabilities $p_{i}equiv p$. For the case of affine costs, we provide an analytic expression for the parameterized price of anarchy as a function of $p$. This function is continuous on $(0,1]$, is equal to $4/3$ for $0<pleq 1/4$, and increases towards $5/2$ when $pto 1$. Our work can be interpreted as providing a continuous transition between the price of anarchy of nonatomic and atomic games, which are the extremes of the price of anarchy function we characterize. We show that these bounds are tight and are attained on routing games -- as opposed to general congestion games -- with purely linear costs (i.e., with no constant terms).
Network congestion games are a well-understood model of multi-agent strategic interactions. Despite their ubiquitous applications, it is not clear whether it is possible to design information structures to ameliorate the overall experience of the net work users. We focus on Bayesian games with atomic players, where network vagaries are modeled via a (random) state of nature which determines the costs incurred by the players. A third-party entity---the sender---can observe the realized state of the network and exploit this additional information to send a signal to each player. A natural question is the following: is it possible for an informed sender to reduce the overall social cost via the strategic provision of information to players who update their beliefs rationally? The paper focuses on the problem of computing optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution. Indeed, we show that an optimal ex ante persuasive signaling scheme can be computed in polynomial time when players are symmetric and have affine cost functions. Moreover, the problem becomes NP-hard when players are asymmetric, even in non-Bayesian settings.
Nash equilibrium is a central concept in game theory. Several Nash solvers exist, yet none scale to normal-form games with many actions and many players, especially those with payoff tensors too big to be stored in memory. In this work, we propose an approach that iteratively improves an approximation to a Nash equilibrium through joint play. It accomplishes this by tracing a previously established homotopy which connects instances of the game defined with decaying levels of entropy regularization. To encourage iterates to remain near this path, we efficiently minimize emph{average deviation incentive} via stochastic gradient descent, intelligently sampling entries in the payoff tensor as needed. This process can also be viewed as constructing and reacting to a polymatrix approximation to the game. In these ways, our proposed approach, emph{average deviation incentive descent with adaptive sampling} (ADIDAS), is most similar to three classical approaches, namely homotopy-type, Lyapunov, and iterative polymatrix solvers. We demonstrate through experiments the ability of this approach to approximate a Nash equilibrium in normal-form games with as many as seven players and twenty one actions (over one trillion outcomes) that are orders of magnitude larger than those possible with prior algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا