ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Analysis of Reversible Binding Receptor Based Decode-and-Forward Relay in Molecular Communication Systems

138   0   0.0 ( 0 )
 نشر من قبل Shuo Yuan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular communication (MC) allows nanomachines to communicate and cooperate with each other in a fluid environment. The diffusion-based MC is popular but is easily constrained by the transmit distance due to the severe attenuation of molecule concentrations. In this letter, we present a decode-and-forward (DF) relay strategy for the reversible binding receptor in the diffusion-based MC system. The time-varying spatial distribution of the information molecules based on the reversible association and dissociation between ligand and receptor at the surface of receiver is characterized. An analytical expression for the evaluation of expected error probability is derived, and the key factors impacting on the performance are exploited. Results show that with a constant molecular budget, the proposal can improve the performance significantly, and the performance gain can be enhanced by optimizing the position of the relay node and the number of molecules assigned to the source node.

قيم البحث

اقرأ أيضاً

168 - Wei-Cheng Liu , Yu-Chen Liu 2016
In this paper, we adopt the relay selection (RS) protocol proposed by Bletsas, Khisti, Reed and Lippman (2006) with Enhanced Dynamic Decode-and-Forward (EDDF) and network coding (NC) system in a two-hop two-way multi-relay network. All nodes are sing le-input single-output (SISO) and half-duplex, i.e., they cannot transmit and receive data simultaneously. The outage probability is analyzed and we show comparisons of outage probability with various scenarios under Rayleigh fading channel. Our results show that the relay selection with EDDF and network coding (RS-EDDF&NC) scheme has the best performance in the sense of outage probability upon the considered decode-and-forward (DF) relaying if there exist sufficiently relays. In addition, the performance loss is large if we select a relay at random. This shows the importance of relay selection strategies.
Parking lots (PLs) are usually full with cars. If these cars are formed into a self-organizing vehicular network, they can be new kind of road side units (RSUs) in urban area to provide communication data forwarding between mobile terminals nearby an d a base station. However cars in PLs can leave at any time, which is neglected in the existing studies. In this paper, we investigate relay cooperative communication based on parked cars in PLs. Taking the impact of the cars leaving behavior into consideration, we derive the expressions of outage probability in a two-hop cooperative communication and its link capacity. Finally, the numerical results show that the impact of a cars arriving time is greater than the impact of the duration the car has parked on outage probability.
We analyze the secrecy performance of a two-hop mixed radio frequency (RF)/underwater wireless optical communication (UWOC) system using a decode-and-forward (DF) relay. All RF and UWOC links are modeled by the $alpha-mu$ and exponential-generalized Gamma distributions, respectively. We first derive the expressions of the secrecy outage probability (SOP) in exact closed-form, which are subsequently used to derive asymptotic expressions at high SNR that only includes simple functions for further insight. Moreover, based on the asymptotic expression, we can determine the optimal transmit power for a wide variety of RF and UWOC channel conditions. All analyses are validated using Monte Carlo simulation.
In this paper, a superposition-coded concurrent decode-and-forward (DF) relaying protocol is presented. A specific scenario, where the inter-relay channel is sufficiently strong, is considered. Assuming perfect source-relay transmissions, the propose d scheme further improves the diversity performance of previously proposed repetition-coded concurrent DF relaying, in which the advantage of the inter-relay interference is not fully extracted.
In this paper, we present an analytical model for a diffusive molecular communication (MC) system with a reversible adsorption receiver in a fluid environment. The time-varying spatial distribution of the information molecules under the reversible ad sorption and desorption reaction at the surface of a bio-receiver is analytically characterized. Based on the spatial distribution, we derive the number of newly-adsorbed information molecules expected in any time duration. Importantly, we present a simulation framework for the proposed model that accounts for the diffusion and reversible reaction. Simulation results show the accuracy of our derived expressions, and demonstrate the positive effect of the adsorption rate and the negative effect of the desorption rate on the net number of newly-adsorbed information molecules expected. Moreover, our analytical results simplify to the special case of an absorbing receiver.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا