ترغب بنشر مسار تعليمي؟ اضغط هنا

Secrecy Outage Analysis of Two-Hop Decode-and-Forward Mixed RF/UWOC Systems

75   0   0.0 ( 0 )
 نشر من قبل Yi Lou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the secrecy performance of a two-hop mixed radio frequency (RF)/underwater wireless optical communication (UWOC) system using a decode-and-forward (DF) relay. All RF and UWOC links are modeled by the $alpha-mu$ and exponential-generalized Gamma distributions, respectively. We first derive the expressions of the secrecy outage probability (SOP) in exact closed-form, which are subsequently used to derive asymptotic expressions at high SNR that only includes simple functions for further insight. Moreover, based on the asymptotic expression, we can determine the optimal transmit power for a wide variety of RF and UWOC channel conditions. All analyses are validated using Monte Carlo simulation.

قيم البحث

اقرأ أيضاً

We study the outage probability of opportunistic relay selection in decode-and-forward relaying with secrecy constraints. We derive the closed-form expression for the outage probability. Based on the analytical result, the asymptotic performance is t hen investigated. The accuracy of our performance analysis is verified by the simulation results.
In this paper, we investigate the performance of a reconfigurable intelligent surface (RIS)-assisted dual-hop mixed radio-frequency underwater wireless optical communication (RF-UWOC) system. An RIS is an emerging and low-cost technology that aims to enhance the strength of the received signal, thus improving the system performance. In the considered system setup, a ground source does not have a reliable direct link to a given marine buoy and communicates with it through an RIS installed on a building. In particular, the buoy acts as a relay that sends the signal to an underwater destination. In this context, analytical expressions for the outage probability (OP), average bit error rate (ABER), and average channel capacity (ACC) are derived assuming fixed-gain amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols at the marine buoy. Moreover, asymptotic analyses of the OP and ABER are carried out in order to gain further insights from the analytical frameworks. In particular, the system diversity order is derived and it is shown to depend on the RF link parameters and on the detection schemes of the UWOC link. Finally, it is demonstrated that RIS-assisted systems can effectively improve the performance of mixed dual-hop RF-UWOC systems.
413 - Sai Li , Liang Yang , 2020
In this paper, we investigate the performance of a mixed radio-frequency-underwater wireless optical communication (RF-UWOC) system where an unmanned aerial vehicle (UAV), as a low-altitude mobile aerial base station, transmits information to an auto nomous underwater vehicle (AUV) through a fixed-gain amplify-and-forward (AF) or decode-and-forward (DF) relay. Our analysis accounts for the main factors that affect the system performance, such as the UAV height, air bubbles, temperature gradient, water salinity variations, and detection techniques. Employing fixed-gain AF relaying and DF relaying, we derive closed-form expressions for some key performance metrics, e.g., outage probability (OP), average bit error rate (ABER), and average channel capacity (ACC). In addition, in order to get further insights, asymptotic analyses for the OP and ABER are also carried out. Furthermore, assuming DF relaying, we derive analytical expressions for the optimal UAV altitude that minimizes the OP. Simulation results show that the UAV altitude influences the system performance and there is an optimal altitude which ensures a minimum OP. Moreover, based on the asymptotic results, it is demonstrated that the diversity order of fixed-gain AF relaying and DF relaying are respectively determined by the RF link and by the detection techniques of the UWOC link.
This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only. In contrast to prior resul ts, our expressions apply for arbitrary numbers of antennas and arbitrary relay configurations. We derive an expression for the exact ergodic capacity, simplified closed-form expressions for the high SNR regime, and tight closed-form upper and lower bounds. These results are made possible to employing recent tools from finite-dimensional random matrix theory to derive new closed-form expressions for various statistical properties of the equivalent AF MIMO dual-hop relay channel, such as the distribution of an unordered eigenvalue and certain random determinant properties. Based on the analytical capacity expressions, we investigate the impact of the system and channel characteristics, such as the antenna configuration and the relay power gain. We also demonstrate a number of interesting relationships between the dual-hop AF MIMO relay channel and conventional point-to-point MIMO channels in various asymptotic regimes.
We study the physical-layer security of a multiple source-destination (SD) pairs coexisting wireless network in the face of an eavesdropper, where an eavesdropper intends to wiretap the signal transmitted by the SD pairs. In order to protect the wire less transmission against eavesdropping, we propose a cooperation framework relying on two stages. Specifically, an SD pair is selected to access the total allocated spectrum using an appropriately designed scheme at the beginning of the first stage. The other source nodes (SNs) simultaneously transmit their data to the SN of the above-mentioned SD pair relying on an orthogonal way during the first stage. Then, the SN of the chosen SD pair transmits the data packets containing its own messages and the other SNs messages to its dedicated destination node (DN) in the second stage, which in turn will forward all the other DNs data to the application center via the core network. We conceive a specific SD pair selection scheme, termed as the transmit antenna selection aided source-destination pair selection (TAS-SDPS). We derive the secrecy outage probability (SOP) expressions for the TAS-SDPS, as well as for the conventional round-robin source-destination pair selection (RSDPS) and non-cooperative (Non-coop) schemes for comparison purposes. Furthermore, we carry out the secrecy diversity gain analysis in the high main-to-eavesdropper ratio (MER) region, showing that the TAS-SDPS scheme is capable of achieving the maximum attainable secrecy diversity order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا