ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Feature Embedding and Hierarchical Classification for Audio Scene Classification

86   0   0.0 ( 0 )
 نشر من قبل Lam Pham
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose an approach that features deep feature embedding learning and hierarchical classification with triplet loss function for Acoustic Scene Classification (ASC). In the one hand, a deep convolutional neural network is firstly trained to learn a feature embedding from scene audio signals. Via the trained convolutional neural network, the learned embedding embeds an input into the embedding feature space and transforms it into a high-level feature vector for representation. In the other hand, in order to exploit the structure of the scene categories, the original scene classification problem is structured into a hierarchy where similar categories are grouped into meta-categories. Then, hierarchical classification is accomplished using deep neural network classifiers associated with triplet loss function. Our experiments show that the proposed system achieves good performance on both the DCASE 2018 Task 1A and 1B datasets, resulting in accuracy gains of 15.6% and 16.6% absolute over the DCASE 2018 baseline on Task 1A and 1B, respectively.



قيم البحث

اقرأ أيضاً

Audio-based multimedia retrieval tasks may identify semantic information in audio streams, i.e., audio concepts (such as music, laughter, or a revving engine). Conventional Gaussian-Mixture-Models have had some success in classifying a reduced set of audio concepts. However, multi-class classification can benefit from context window analysis and the discriminating power of deeper architectures. Although deep learning has shown promise in various applications such as speech and object recognition, it has not yet met the expectations for other fields such as audio concept classification. This paper explores, for the first time, the potential of deep learning in classifying audio concepts on User-Generated Content videos. The proposed system is comprised of two cascaded neural networks in a hierarchical configuration to analyze the short- and long-term context information. Our system outperforms a GMM approach by a relative 54%, a Neural Network by 33%, and a Deep Neural Network by 12% on the TRECVID-MED database
This paper presents the details of the Audio-Visual Scene Classification task in the DCASE 2021 Challenge (Task 1 Subtask B). The task is concerned with classification using audio and video modalities, using a dataset of synchronized recordings. This task has attracted 43 submissions from 13 different teams around the world. Among all submissions, more than half of the submitted systems have better performance than the baseline. The common techniques among the top systems are the usage of large pretrained models such as ResNet or EfficientNet which are trained for the task-specific problem. Fine-tuning, transfer learning, and data augmentation techniques are also employed to boost the performance. More importantly, multi-modal methods using both audio and video are employed by all the top 5 teams. The best system among all achieved a logloss of 0.195 and accuracy of 93.8%, compared to the baseline system with logloss of 0.662 and accuracy of 77.1%.
In this paper, the Brno University of Technology (BUT) team submissions for Task 1 (Acoustic Scene Classification, ASC) of the DCASE-2018 challenge are described. Also, the analysis of different methods on the leaderboard set is provided. The propose d approach is a fusion of two different Convolutional Neural Network (CNN) topologies. The first one is the common two-dimensional CNNs which is mainly used in image classification. The second one is a one-dimensional CNN for extracting fixed-length audio segment embeddings, so called x-vectors, which has also been used in speech processing, especially for speaker recognition. In addition to the different topologies, two types of features were tested: log mel-spectrogram and CQT features. Finally, the outputs of different systems are fused using a simple output averaging in the best performing system. Our submissions ranked third among 24 teams in the ASC sub-task A (task1a).
Acoustic scene classification systems using deep neural networks classify given recordings into pre-defined classes. In this study, we propose a novel scheme for acoustic scene classification which adopts an audio tagging system inspired by the human perception mechanism. When humans identify an acoustic scene, the existence of different sound events provides discriminative information which affects the judgement. The proposed framework mimics this mechanism using various approaches. Firstly, we employ three methods to concatenate tag vectors extracted using an audio tagging system with an intermediate hidden layer of an acoustic scene classification system. We also explore the multi-head attention on the feature map of an acoustic scene classification system using tag vectors. Experiments conducted on the detection and classification of acoustic scenes and events 2019 task 1-a dataset demonstrate the effectiveness of the proposed scheme. Concatenation and multi-head attention show a classification accuracy of 75.66 % and 75.58 %, respectively, compared to 73.63 % accuracy of the baseline. The system with the proposed two approaches combined demonstrates an accuracy of 76.75 %.
In this paper, we present SpecAugment++, a novel data augmentation method for deep neural networks based acoustic scene classification (ASC). Different from other popular data augmentation methods such as SpecAugment and mixup that only work on the i nput space, SpecAugment++ is applied to both the input space and the hidden space of the deep neural networks to enhance the input and the intermediate feature representations. For an intermediate hidden state, the augmentation techniques consist of masking blocks of frequency channels and masking blocks of time frames, which improve generalization by enabling a model to attend not only to the most discriminative parts of the feature, but also the entire parts. Apart from using zeros for masking, we also examine two approaches for masking based on the use of other samples within the minibatch, which helps introduce noises to the networks to make them more discriminative for classification. The experimental results on the DCASE 2018 Task1 dataset and DCASE 2019 Task1 dataset show that our proposed method can obtain 3.6% and 4.7% accuracy gains over a strong baseline without augmentation (i.e. CP-ResNet) respectively, and outperforms other previous data augmentation methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا