ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Neural Networks and x-vector Embedding for DCASE2018 Acoustic Scene Classification Challenge

69   0   0.0 ( 0 )
 نشر من قبل Hossein Zeinali
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the Brno University of Technology (BUT) team submissions for Task 1 (Acoustic Scene Classification, ASC) of the DCASE-2018 challenge are described. Also, the analysis of different methods on the leaderboard set is provided. The proposed approach is a fusion of two different Convolutional Neural Network (CNN) topologies. The first one is the common two-dimensional CNNs which is mainly used in image classification. The second one is a one-dimensional CNN for extracting fixed-length audio segment embeddings, so called x-vectors, which has also been used in speech processing, especially for speaker recognition. In addition to the different topologies, two types of features were tested: log mel-spectrogram and CQT features. Finally, the outputs of different systems are fused using a simple output averaging in the best performing system. Our submissions ranked third among 24 teams in the ASC sub-task A (task1a).


قيم البحث

اقرأ أيضاً

In this work, we propose an approach that features deep feature embedding learning and hierarchical classification with triplet loss function for Acoustic Scene Classification (ASC). In the one hand, a deep convolutional neural network is firstly tra ined to learn a feature embedding from scene audio signals. Via the trained convolutional neural network, the learned embedding embeds an input into the embedding feature space and transforms it into a high-level feature vector for representation. In the other hand, in order to exploit the structure of the scene categories, the original scene classification problem is structured into a hierarchy where similar categories are grouped into meta-categories. Then, hierarchical classification is accomplished using deep neural network classifiers associated with triplet loss function. Our experiments show that the proposed system achieves good performance on both the DCASE 2018 Task 1A and 1B datasets, resulting in accuracy gains of 15.6% and 16.6% absolute over the DCASE 2018 baseline on Task 1A and 1B, respectively.
This paper proposes a Sub-band Convolutional Neural Network for spoken term classification. Convolutional neural networks (CNNs) have proven to be very effective in acoustic applications such as spoken term classification, keyword spotting, speaker i dentification, acoustic event detection, etc. Unlike applications in computer vision, the spatial invariance property of 2D convolutional kernels does not fit acoustic applications well since the meaning of a specific 2D kernel varies a lot along the feature axis in an input feature map. We propose a sub-band CNN architecture to apply different convolutional kernels on each feature sub-band, which makes the overall computation more efficient. Experimental results show that the computational efficiency brought by sub-band CNN is more beneficial for small-footprint models. Compared to a baseline full band CNN for spoken term classification on a publicly available Speech Commands dataset, the proposed sub-band CNN architecture reduces the computation by 39.7% on commands classification, and 49.3% on digits classification with accuracy maintained.
In this paper, we present SpecAugment++, a novel data augmentation method for deep neural networks based acoustic scene classification (ASC). Different from other popular data augmentation methods such as SpecAugment and mixup that only work on the i nput space, SpecAugment++ is applied to both the input space and the hidden space of the deep neural networks to enhance the input and the intermediate feature representations. For an intermediate hidden state, the augmentation techniques consist of masking blocks of frequency channels and masking blocks of time frames, which improve generalization by enabling a model to attend not only to the most discriminative parts of the feature, but also the entire parts. Apart from using zeros for masking, we also examine two approaches for masking based on the use of other samples within the minibatch, which helps introduce noises to the networks to make them more discriminative for classification. The experimental results on the DCASE 2018 Task1 dataset and DCASE 2019 Task1 dataset show that our proposed method can obtain 3.6% and 4.7% accuracy gains over a strong baseline without augmentation (i.e. CP-ResNet) respectively, and outperforms other previous data augmentation methods.
This paper presents the details of the Audio-Visual Scene Classification task in the DCASE 2021 Challenge (Task 1 Subtask B). The task is concerned with classification using audio and video modalities, using a dataset of synchronized recordings. This task has attracted 43 submissions from 13 different teams around the world. Among all submissions, more than half of the submitted systems have better performance than the baseline. The common techniques among the top systems are the usage of large pretrained models such as ResNet or EfficientNet which are trained for the task-specific problem. Fine-tuning, transfer learning, and data augmentation techniques are also employed to boost the performance. More importantly, multi-modal methods using both audio and video are employed by all the top 5 teams. The best system among all achieved a logloss of 0.195 and accuracy of 93.8%, compared to the baseline system with logloss of 0.662 and accuracy of 77.1%.
Acoustic scene classification identifies an input segment into one of the pre-defined classes using spectral information. The spectral information of acoustic scenes may not be mutually exclusive due to common acoustic properties across different cla sses, such as babble noises included in both airports and shopping malls. However, conventional training procedure based on one-hot labels does not consider the similarities between different acoustic scenes. We exploit teacher-student learning with the purpose to derive soft-labels that consider common acoustic properties among different acoustic scenes. In teacher-student learning, the teacher network produces soft-labels, based on which the student network is trained. We investigate various methods to extract soft-labels that better represent similarities across different scenes. Such attempts include extracting soft-labels from multiple audio segments that are defined as an identical acoustic scene. Experimental results demonstrate the potential of our approach, showing a classification accuracy of 77.36 % on the DCASE 2018 task 1 validation set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا