ﻻ يوجد ملخص باللغة العربية
Inactivation of microorganisms on sensitive surfaces by cold atmospheric plasma (CAP) is one major application in the field of plasma medicine because it provides a simple and effective way to sterilize heat-sensitive materials. Therefore, one has to know whether plasma treatment affects the treated surfaces, and thus causes long-term surface modifications. In this contribution, the effect of cold atmospheric Surface Micro-Discharge (SMD) plasma on different materials and its sporicidal behavior was investigated. Hence, different material samples (stainless steel, different polymers and glass) were plasma-treated for 16 hours, simulating multiple plasma treatments using an SMD plasma device. Afterwards, the material samples were analyzed using surface analysis methods such as laser microscopy, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Furthermore, the device was used to investigate the behavior of Bacillus atrophaeus endospores inoculated on material samples at different treatment times. The interaction results for plasma-treated endospores show, that a log reduction of the spore count between 4.3 and 6.2 can be achieved within 15 min of plasma treatment. Besides, the surface analysis revealed, that there were three different types of reactions the probed materials showed to plasma treatment, ranging from no changes to shifts of the materials free surface energies and oxidation. As a consequence, it should be taken into account that even though cold atmospheric plasma treatment is a non-thermal method to inactivate microorganisms on heatsensitive materials, it still affects surface properties of the treated materials. Therefore, the focus of future work must be a further classification of plasma-caused material modifications.
The use of cold atmospheric plasmas (CAP) to sterilize sensitive surfaces is an interesting new field of applied plasma physics. Motivated by the shortages of face masks and safety clothing at the beginning of the corona pandemic, we conducted studie
It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected
The nonlinear dynamics of energetic particle (EP) driven geodesic acoustic modes (EGAM) in tokamaks is investigated, and compared with the beam-plasma system (BPS). The EGAM is studied with the global gyrokinetic (GK) particle-in-cell code ORB5, trea
Here we show that, despite a massive incident flux of energetic species, plasmas can induce transient cooling of a material surface. Using time-resolved optical thermometry in-situ with this plasma excitation, we reveal the novel underlying physics t
Kinetic simulations and theory demonstrate that whistler waves can excite oblique, short-wavelength fluctuations through secondary drift instabilities if a population of sufficiently cold plasma is present. The excited modes lead to heating of the co