ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasma-induced surface cooling

214   0   0.0 ( 0 )
 نشر من قبل John Tomko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we show that, despite a massive incident flux of energetic species, plasmas can induce transient cooling of a material surface. Using time-resolved optical thermometry in-situ with this plasma excitation, we reveal the novel underlying physics that drive this `plasma cooling that is driven by the diverse chemical and energetic species that comprise this fourth state of matter. We show that the photons and massive particles in the plasma impart energy to different chemical species on a surface, leading to local and temporally changing temperatures that lead to both increases and decreases in temperature on the surface of the sample, even though energy is being imparted to the material. This balance comes from the interplay between chemical reactions, momentum transfer, and energy exchange which occur on different time scales over the course of picoseconds to milliseconds. Thus, we show that through energetically exciting a material with a plasma, we can induce cooling, which can lead to revolutionary advances in refrigeration and thermal mitigation with this new process that is not inhibited by the same limitations in the current state-of-the-art systems.

قيم البحث

اقرأ أيضاً

We propose to measure the surface charge accumulating at the interface between a plasma and a dielectric by infrared spectroscopy using the dielectric as a multi-internal reflection element. The surplus charge leads to an attenuation of the transmitt ed signal from which the magnitude of the charge can be inferred. Calculating the optical response perturbatively in first order from the Boltzmann equation for the electron-hole plasma inside the solid, we can show that in the parameter range of interest a classical Drude term results. Only the integrated surface charge enters, opening up thereby a very efficient analysis of measured data.
Laser cooling of a solid is achieved when a coherent laser illuminates the material, and the heat is extracted by resulting anti-Stokes fluorescence. Over the past year, net solid-state laser cooling was successfully demonstrated for the first time i n Yb-doped silica glass in both bulk samples and fibers. Here, we improve the previously published results by one order of magnitude and report more than 6K of cooling below the ambient temperature. This result is the lowest temperature achieved in solid-state laser cooling of silica glass to date to the best of our knowledge. We present details on the experiment performed using a 20W laser operating at 1035nm wavelength and temperature measurements using both a thermal camera and the differential luminescence thermometry technique.
106 - Sergey Khrapak 2021
A simple vibrational model of heat transfer in two-dimensional (2D) fluids relates the heat conductivity coefficient to the longitudinal and transverse sound velocities, specific heat, and the mean interatomic separation. This model is demonstrated n ot to contradict the available experimental and numerical data on heat transfer in 2D complex plasma layers. Additionally, the heat conductivity coefficient of a 2D one-component plasma with a logarithmic interaction is evaluated.
103 - S. Kawata , Y. J. Gu 2020
A dynamic mitigation mechanism of the two-stream instability is discussed based on a phase control for plasma and fluid instabilities. The basic idea for the dynamic mitigation mechanism by the phase control was proposed in the paper [Phys. Plasmas 1 9, 024503(2012)]. The mitigation method is applied to the two-stream instability in this paper. In general, instabilities appear from the perturbations, and normally the perturbation phase is unknown. Therefore, the instability growth rate is discussed in fluids and plasmas. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively. For instance, a perturbed driver induces a perturbation to fluids or plasmas; if the perturbation induced by the perturbed driver is oscillated actively by the driver oscillation, the perturbation phase is known and the perturbation amplitude can be controlled, like a feedforward control. The application result shown in this paper demonstrates that the dynamic mitigation mechanism works well to smooth the non-uniformities and mitigate the instabilities in plasmas.
The interaction of ultra-intense lasers with solid foils can be used to accelerate ions to high energies well exceeding 60 MeV. The non-linear relativistic motion of electrons in the intense laser radiation leads to their acceleration and later to th e acceleration of ions. Ions can be accelerated from the front surface, the foil interior region, and the foil rear surface (TNSA, most widely used), or the foil may be accelerated as a whole if sufficiently thin (RPA). Here, we focus on the most widely used mechanism for laser ion-acceleration of TNSA. Starting from perfectly flat foils we show by simulations how electron filamentation at or inside the solid leads to a spatial modulations in the ions. The exact dynamics depend very sensitively on the chosen initial parameters which has a tremendous effect on electron dynamics. In the case of step-like density gradients we find evidence that suggests a two-surface-plasmon decay of plasma oscillations triggering a Raileigh-Taylor-like instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا