ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning for Classifying Food Waste

153   0   0.0 ( 0 )
 نشر من قبل Amin Mazloumian
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One third of food produced in the world for human consumption -- approximately 1.3 billion tons -- is lost or wasted every year. By classifying food waste of individual consumers and raising awareness of the measures, avoidable food waste can be significantly reduced. In this research, we use deep learning to classify food waste in half a million images captured by cameras installed on top of food waste bins. We specifically designed a deep neural network that classifies food waste for every time food waste is thrown in the waste bins. Our method presents how deep learning networks can be tailored to best learn from available training data.



قيم البحث

اقرأ أيضاً

103 - Doyen Sahoo , Wang Hao , Shu Ke 2019
An important aspect of health monitoring is effective logging of food consumption. This can help management of diet-related diseases like obesity, diabetes, and even cardiovascular diseases. Moreover, food logging can help fitness enthusiasts, and pe ople who wanting to achieve a target weight. However, food-logging is cumbersome, and requires not only taking additional effort to note down the food item consumed regularly, but also sufficient knowledge of the food item consumed (which is difficult due to the availability of a wide variety of cuisines). With increasing reliance on smart devices, we exploit the convenience offered through the use of smart phones and propose a smart-food logging system: FoodAI, which offers state-of-the-art deep-learning based image recognition capabilities. FoodAI has been developed in Singapore and is particularly focused on food items commonly consumed in Singapore. FoodAI models were trained on a corpus of 400,000 food images from 756 different classes. In this paper we present extensive analysis and insights into the development of this system. FoodAI has been deployed as an API service and is one of the components powering Healthy 365, a mobile app developed by Singapores Heath Promotion Board. We have over 100 registered organizations (universities, companies, start-ups) subscribing to this service and actively receive several API requests a day. FoodAI has made food logging convenient, aiding smart consumption and a healthy lifestyle.
In this paper, we propose and analyse a system that can automatically detect, localise and classify polyps from colonoscopy videos. The detection of frames with polyps is formulated as a few-shot anomaly classification problem, where the training set is highly imbalanced with the large majority of frames consisting of normal images and a small minority comprising frames with polyps. Colonoscopy videos may contain blurry images and frames displaying feces and water jet sprays to clean the colon -- such frames can mistakenly be detected as anomalies, so we have implemented a classifier to reject these two types of frames before polyp detection takes place. Next, given a frame containing a polyp, our method localises (with a bounding box around the polyp) and classifies it into five different classes. Furthermore, we study a method to improve the reliability and interpretability of the classification result using uncertainty estimation and classification calibration. Classification uncertainty and calibration not only help improve classification accuracy by rejecting low-confidence and high-uncertain results, but can be used by doctors to decide how to decide on the classification of a polyp. All the proposed detection, localisation and classification methods are tested using large data sets and compared with relevant baseline approaches.
Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations i n water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification.
96 - Ying Huang , Wenwei Zhang , 2020
Face anti-spoofing is crucial for the security of face recognition system, by avoiding invaded with presentation attack. Previous works have shown the effectiveness of using depth and temporal supervision for this task. However, depth supervision is often considered only in a single frame, and temporal supervision is explored by utilizing certain signals which is not robust to the change of scenes. In this work, motivated by two stream ConvNets, we propose a novel two stream FreqSaptialTemporalNet for face anti-spoofing which simultaneously takes advantage of frequent, spatial and temporal information. Compared with existing methods which mine spoofing cues in multi-frame RGB image, we make multi-frame spectrum image as one input stream for the discriminative deep neural network, encouraging the primary difference between live and fake video to be automatically unearthed. Extensive experiments show promising improvement results using the proposed architecture. Meanwhile, we proposed a concise method to obtain a large amount of spoofing training data by utilizing a frequent augmentation pipeline, which contributes detail visualization between live and fake images as well as data insufficiency issue when training large networks.
The ability to predict, anticipate and reason about future outcomes is a key component of intelligent decision-making systems. In light of the success of deep learning in computer vision, deep-learning-based video prediction emerged as a promising re search direction. Defined as a self-supervised learning task, video prediction represents a suitable framework for representation learning, as it demonstrated potential capabilities for extracting meaningful representations of the underlying patterns in natural videos. Motivated by the increasing interest in this task, we provide a review on the deep learning methods for prediction in video sequences. We firstly define the video prediction fundamentals, as well as mandatory background concepts and the most used datasets. Next, we carefully analyze existing video prediction models organized according to a proposed taxonomy, highlighting their contributions and their significance in the field. The summary of the datasets and methods is accompanied with experimental results that facilitate the assessment of the state of the art on a quantitative basis. The paper is summarized by drawing some general conclusions, identifying open research challenges and by pointing out future research directions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا