ﻻ يوجد ملخص باللغة العربية
Face anti-spoofing is crucial for the security of face recognition system, by avoiding invaded with presentation attack. Previous works have shown the effectiveness of using depth and temporal supervision for this task. However, depth supervision is often considered only in a single frame, and temporal supervision is explored by utilizing certain signals which is not robust to the change of scenes. In this work, motivated by two stream ConvNets, we propose a novel two stream FreqSaptialTemporalNet for face anti-spoofing which simultaneously takes advantage of frequent, spatial and temporal information. Compared with existing methods which mine spoofing cues in multi-frame RGB image, we make multi-frame spectrum image as one input stream for the discriminative deep neural network, encouraging the primary difference between live and fake video to be automatically unearthed. Extensive experiments show promising improvement results using the proposed architecture. Meanwhile, we proposed a concise method to obtain a large amount of spoofing training data by utilizing a frequent augmentation pipeline, which contributes detail visualization between live and fake images as well as data insufficiency issue when training large networks.
Face anti-spoofing is critical to the security of face recognition systems. Depth supervised learning has been proven as one of the most effective methods for face anti-spoofing. Despite the great success, most previous works still formulate the prob
Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on
Face anti-spoofing is designed to keep face recognition systems from recognizing fake faces as the genuine users. While advanced face anti-spoofing methods are developed, new types of spoof attacks are also being created and becoming a threat to all
A practical face recognition system demands not only high recognition performance, but also the capability of detecting spoofing attacks. While emerging approaches of face anti-spoofing have been proposed in recent years, most of them do not generali
We address the problem of face anti-spoofing which aims to make the face verification systems robust in the real world settings. The context of detecting live vs. spoofed face images may differ significantly in the target domain, when compared to tha