ﻻ يوجد ملخص باللغة العربية
Face anti-spoofing is critical to the security of face recognition systems. Depth supervised learning has been proven as one of the most effective methods for face anti-spoofing. Despite the great success, most previous works still formulate the problem as a single-frame multi-task one by simply augmenting the loss with depth, while neglecting the detailed fine-grained information and the interplay between facial depths and moving patterns. In contrast, we design a new approach to detect presentation attacks from multiple frames based on two insights: 1) detailed discriminative clues (e.g., spatial gradient magnitude) between living and spoofing face may be discarded through stacked vanilla convolutions, and 2) the dynamics of 3D moving faces provide important clues in detecting the spoofing faces. The proposed method is able to capture discriminative details via Residual Spatial Gradient Block (RSGB) and encode spatio-temporal information from Spatio-Temporal Propagation Module (STPM) efficiently. Moreover, a novel Contrastive Depth Loss is presented for more accurate depth supervision. To assess the efficacy of our method, we also collect a Double-modal Anti-spoofing Dataset (DMAD) which provides actual depth for each sample. The experiments demonstrate that the proposed approach achieves state-of-the-art results on five benchmark datasets including OULU-NPU, SiW, CASIA-MFSD, Replay-Attack, and the new DMAD. Codes will be available at https://github.com/clks-wzz/FAS-SGTD.
Face anti-spoofing is crucial for the security of face recognition system, by avoiding invaded with presentation attack. Previous works have shown the effectiveness of using depth and temporal supervision for this task. However, depth supervision is
Face anti-spoofing is significant to the security of face recognition systems. Previous works on depth supervised learning have proved the effectiveness for face anti-spoofing. Nevertheless, they only considered the depth as an auxiliary supervision
Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on
Face anti-spoofing is designed to keep face recognition systems from recognizing fake faces as the genuine users. While advanced face anti-spoofing methods are developed, new types of spoof attacks are also being created and becoming a threat to all
A practical face recognition system demands not only high recognition performance, but also the capability of detecting spoofing attacks. While emerging approaches of face anti-spoofing have been proposed in recent years, most of them do not generali