ترغب بنشر مسار تعليمي؟ اضغط هنا

A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome Prediction

94   0   0.0 ( 0 )
 نشر من قبل Hieu Nguyen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Patients resuscitated from cardiac arrest (CA) face a high risk of neurological disability and death, however pragmatic methods are lacking for accurate and reliable prognostication. The aim of this study was to build computational models to predict post-CA outcome by leveraging high-dimensional patient data available early after admission to the intensive care unit (ICU). We hypothesized that model performance could be enhanced by integrating physiological time series (PTS) data and by training machine learning (ML) classifiers. We compared three models integrating features extracted from the electronic health records (EHR) alone, features derived from PTS collected in the first 24hrs after ICU admission (PTS24), and models integrating PTS24 and EHR. Outcomes of interest were survival and neurological outcome at ICU discharge. Combined EHR-PTS24 models had higher discrimination (area under the receiver operating characteristic curve [AUC]) than models which used either EHR or PTS24 alone, for the prediction of survival (AUC 0.85, 0.80 and 0.68 respectively) and neurological outcome (0.87, 0.83 and 0.78). The best ML classifier achieved higher discrimination than the reference logistic regression model (APACHE III) for survival (AUC 0.85 vs 0.70) and neurological outcome prediction (AUC 0.87 vs 0.75). Feature analysis revealed previously unknown factors to be associated with post-CA recovery. Results attest to the effectiveness of ML models for post-CA predictive modeling and suggest that PTS recorded in very early phase after resuscitation encode short-term outcome probabilities.



قيم البحث

اقرأ أيضاً

An electrocardiogram (EKG) is a common, non-invasive test that measures the electrical activity of a patients heart. EKGs contain useful diagnostic information about patient health that may be absent from other electronic health record (EHR) data. As multi-dimensional waveforms, they could be modeled using generic machine learning tools, such as a linear factor model or a variational autoencoder. We take a different approach:~we specify a model that directly represents the underlying electrophysiology of the heart and the EKG measurement process. We apply our model to two datasets, including a sample of emergency department EKG reports with missing data. We show that our model can more accurately reconstruct missing data (measured by test reconstruction error) than a standard baseline when there is significant missing data. More broadly, this physiological representation of heart function may be useful in a variety of settings, including prediction, causal analysis, and discovery.
The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influen ce of the pericardium is essential for predictive mechanical simulations of the heart. However, there is no consensus on physiologically correct and computationally tractable pericardial boundary conditions. Here we propose to model the pericardial influence as a parallel spring and dashpot acting in normal direction to the epicardium. Using a four-chamber geometry, we compare a model with pericardial boundary conditions to a model with fixated apex. The influence of pericardial stiffness is demonstrated in a parametric study. Comparing simulation results to measurements from cine magnetic resonance imaging reveals that adding pericardial boundary conditions yields a better approximation with respect to atrioventricular plane displacement, atrial filling, and overall spatial approximation error. We demonstrate that this simple model of pericardial-myocardial interaction can correctly predict the pumping mechanisms of the heart as previously assessed in clinical studies. Utilizing a pericardial model can not only provide much more realistic cardiac mechanics simulations but also allows new insights into pericardial-myocardial interaction which cannot be assessed in clinical measurements yet.
164 - Rui Li , Zach Shahn , Jun Li 2020
Counterfactual prediction is a fundamental task in decision-making. G-computation is a method for estimating expected counterfactual outcomes under dynamic time-varying treatment strategies. Existing G-computation implementations have mostly employed classical regression models with limited capacity to capture complex temporal and nonlinear dependence structures. This paper introduces G-Net, a novel sequential deep learning framework for G-computation that can handle complex time series data while imposing minimal modeling assumptions and provide estimates of individual or population-level time varying treatment effects. We evaluate alternative G-Net implementations using realistically complex temporal simulated data obtained from CVSim, a mechanistic model of the cardiovascular system.
Stroke is a major cause of mortality and long--term disability in the world. Predictive outcome models in stroke are valuable for personalized treatment, rehabilitation planning and in controlled clinical trials. In this paper we design a new model t o predict outcome in the short-term, the putative therapeutic window for several treatments. Our regression-based model has a parametric form that is designed to address many challenges common in medical datasets like highly correlated variables and class imbalance. Empirically our model outperforms the best--known previous models in predicting short--term outcomes and in inferring the most effective treatments that improve outcome.
Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present t he generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا