ﻻ يوجد ملخص باللغة العربية
Dialogue research tends to distinguish between chit-chat and goal-oriented tasks. While the former is arguably more naturalistic and has a wider use of language, the latter has clearer metrics and a straightforward learning signal. Humans effortlessly combine the two, for example engaging in chit-chat with the goal of exchanging information or eliciting a specific response. Here, we bridge the divide between these two domains in the setting of a rich multi-player text-based fantasy environment where agents and humans engage in both actions and dialogue. Specifically, we train a goal-oriented model with reinforcement learning against an imitation-learned ``chit-chat model with two approaches: the policy either learns to pick a topic or learns to pick an utterance given the top-K utterances from the chit-chat model. We show that both models outperform an inverse model baseline and can converse naturally with their dialogue partner in order to achieve goals.
Goal-oriented dialogue systems typically rely on components specifically developed for a single task or domain. This limits such systems in two different ways: If there is an update in the task domain, the dialogue system usually needs to be updated
Much of NLP research has focused on crowdsourced static datasets and the supervised learning paradigm of training once and then evaluating test performance. As argued in de Vries et al. (2020), crowdsourced data has the issues of lack of naturalness
We seek to create agents that both act and communicate with other agents in pursuit of a goal. Towards this end, we extend LIGHT (Urbanek et al. 2019) -- a large-scale crowd-sourced fantasy text-game -- with a dataset of quests. These contain natural
It is essential for dialogue-based spatial reasoning systems to maintain memory of historical states of the world. In addition to conveying that the dialogue agent is mentally present and engaged with the task, referring to historical states may be c
Modeling dialog as a collaborative activity consists notably in specifying the content of the Conversational Common Ground and the kind of social mental state involved. In previous work (Saget, 2006), we claim that Collective Acceptance is the proper