ﻻ يوجد ملخص باللغة العربية
Whereas disclination defects are energetically prohibitive in two-dimensional flat crystals, their existence is necessary in crystals with spherical topology, such as viral capsids, colloidosomes or fullerenes. Such a geometrical frustration gives rise to large elastic stresses, which render the crystal unstable when its size is significantly larger than the typical lattice spacing. Depending on the compliance of the crystal with respect to stretching and bending deformations, these stresses are alleviated by either a local increase of the intrinsic curvature in proximity of the disclinations or by the proliferation of excess dislocations, often organized in the form of one-dimensional chains known as scars. The associated strain field of the scars is such to counterbalance the one resulting from the isolated disclinations. Here, we develop a continuum theory of dislocation screening in two-dimensional closed crystals with genus one. Upon modeling the flux of scars emanating from a given disclination as an independent scalar field, we demonstrate that the elastic energy of closed two-dimensional crystals with various degrees of asphericity can be expressed as a simple quadratic function of the screened topological charge of the disclinations, both at zero and finite temperature. This allows us to predict the optimal density of the excess dislocations as well as the minimal stretching energy attained by the crystal.
At high area fractions, monolayers of colloidal dimer particles form a degenerate crystal (DC) structure in which the particle lobes occupy triangular lattice sites while the particles are oriented randomly along any of the three lattice directions.
We study the topology of smectic defects in two and three dimensions. We give a topological classification of smectic point defects and disclination lines in three dimensions. In addition we describe the combination rules for smectic point defects in
We demonstrate that crystal defects can act as a probe of intrinsic non-Hermitian topology. In particular, in point-gapped systems with periodic boundary conditions, a pair of dislocations may induce a non-Hermitian skin effect, where an extensive nu
Although fragile topology has been intensely studied in static crystals, it is not clear how to generalize the concept to dynamical systems. In this work, we generalize the concept of fragile topology, and provide a definition of fragile topology for
We calculate the dislocation glide mobility in solid $^4$He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role t