ترغب بنشر مسار تعليمي؟ اضغط هنا

Dislocation Skin Effect in Non-Hermitian Crystals

114   0   0.0 ( 0 )
 نشر من قبل Frank Schindler
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that crystal defects can act as a probe of intrinsic non-Hermitian topology. In particular, in point-gapped systems with periodic boundary conditions, a pair of dislocations may induce a non-Hermitian skin effect, where an extensive number of Hamiltonian eigenstates localize at only one of the two dislocations. An example of such a phase are two-dimensional systems exhibiting weak non-Hermitian topology, which are adiabatically related to a decoupled stack of one-dimensional Hatano-Nelson chains. Moreover, we show that strong two-dimensional point gap topology may also result in a dislocation response, even when there is no skin effect present with open boundary conditions. For both cases, we directly relate their bulk topology to a stable dislocation skin effect. Finally, and in stark contrast to the Hermitian case, we find that gapless non-Hermitian systems hosting bulk exceptional points also give rise to a well-localized dislocation response.



قيم البحث

اقرأ أيضاً

Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary, which underlies the breakdown of the bulk-edge correspondence. Here we investigate the emergence of the skin effect in magnetic insulating systems by developing a phenomenological approach to describing magnetic dissipation within a lattice model. Focusing on a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions, we find that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key role in the accumulation of bulk states at the boundaries.
140 - Kai Zhang , Zhesen Yang , 2021
Skin effect, experimentally discovered in one dimension, describes the physical phenomenon that on an open chain, an extensive number of eigenstates of a non-Hermitian hamiltonian are localized at the end(s) of the chain. Here in two and higher dimen sions, we establish a theorem that the skin effect exists, if and only if periodic-boundary spectrum of the hamiltonian covers a finite area on the complex plane. This theorem establishes the universality of the effect, because the above condition is satisfied in almost every generic non-Hermitian hamiltonian, and, unlike in one dimension, is compatible with all spatial symmetries. We propose two new types of skin effect in two and higher dimensions: the corner-skin effect where all eigenstates are localized at one corner of the system, and the geometry-dependent-skin effect where skin modes disappear for systems of a particular shape, but appear on generic polygons. An immediate corollary of our theorem is that any non-Hermitian system having exceptional points (lines) in two (three) dimensions exhibits skin effect, making this phenomenon accessible to experiments in photonic crystals, Weyl semimetals, and Kondo insulators.
Non-Hermitian skin effect and critical skin effect are unique features of non-Hermitian systems. In this Letter, we study an open system with its dynamics of single-particle correlation function effectively dominated by a non-Hermitian damping matrix , which exhibits $mathbb{Z}_2$ skin effect, and uncover the existence of a novel phenomenon of helical damping. When adding perturbations that break anomalous time reversal symmetry to the system, the critical skin effect occurs, which causes the disappearance of the helical damping in the thermodynamic limit although it can exist in small size systems. We also demonstrate the existence of anomalous critical skin effect when we couple two identical systems with $mathbb{Z}_2$ skin effect. With the help of non-Bloch band theory, we unveil that the change of generalized Brillouin zone equation is the necessary condition of critical skin effect.
We demonstrate that dislocations in two-dimensional non-Hermitian systems can give rise to density accumulation or depletion through the localization of an extensive number of states. These effects are shown by numerical simulations in a prototype la ttice model and expose a completely new face of non-Hermitian skin effect, by disentangling it from the need for boundaries. We identify a topological invariant responsible for the dislocation skin effect, which takes the form of a ${mathbb Z}_2$ Hopf index that depends on the Burgers vector characterizing the dislocations. Remarkably, we find that this effect and its corresponding signature for defects in Hermitian systems falls outside of the known topological classification based on bulk-defect correspondence.
231 - C. Yuce 2021
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonline ar effects can give rise to a host of novel phenomenas, which may be used for nonlinear structure designs. Here we study nonlinear non-Hermitian skin effect and explore nonlocal and substantial effects of edges on stationary nonlinear solutions. We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation. We show that stationary solutions are localized at the edge in the continuum band. We consider a non-Hermitian Ablowitz-Ladik model and show that nonlinear exceptional point disappears if the lattice is infinitely long.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا