ﻻ يوجد ملخص باللغة العربية
We demonstrate that crystal defects can act as a probe of intrinsic non-Hermitian topology. In particular, in point-gapped systems with periodic boundary conditions, a pair of dislocations may induce a non-Hermitian skin effect, where an extensive number of Hamiltonian eigenstates localize at only one of the two dislocations. An example of such a phase are two-dimensional systems exhibiting weak non-Hermitian topology, which are adiabatically related to a decoupled stack of one-dimensional Hatano-Nelson chains. Moreover, we show that strong two-dimensional point gap topology may also result in a dislocation response, even when there is no skin effect present with open boundary conditions. For both cases, we directly relate their bulk topology to a stable dislocation skin effect. Finally, and in stark contrast to the Hermitian case, we find that gapless non-Hermitian systems hosting bulk exceptional points also give rise to a well-localized dislocation response.
Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect,
Skin effect, experimentally discovered in one dimension, describes the physical phenomenon that on an open chain, an extensive number of eigenstates of a non-Hermitian hamiltonian are localized at the end(s) of the chain. Here in two and higher dimen
Non-Hermitian skin effect and critical skin effect are unique features of non-Hermitian systems. In this Letter, we study an open system with its dynamics of single-particle correlation function effectively dominated by a non-Hermitian damping matrix
We demonstrate that dislocations in two-dimensional non-Hermitian systems can give rise to density accumulation or depletion through the localization of an extensive number of states. These effects are shown by numerical simulations in a prototype la
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonline