ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Fragile Topology in Floquet Crystals

198   0   0.0 ( 0 )
 نشر من قبل Jiabin Yu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although fragile topology has been intensely studied in static crystals, it is not clear how to generalize the concept to dynamical systems. In this work, we generalize the concept of fragile topology, and provide a definition of fragile topology for noninteracting Floquet crystals, which we refer to as dynamical fragile topology. In contrast to the static fragile topology defined for Wannier obstruction, dynamical fragile topology is defined for the nontrivial quantum dynamics characterized by obstruction to static limits (OTSL). Specifically, OTSL of a Floquet crystal is fragile if and only if the OTSL disappears after adding a symmetry-preserving static Hamiltonian in a direct-sum way preserving the relevant gaps (RGs). We further present a concrete 2+1D example for dynamical fragile topology, based on a slight modification of the model in [Rudner et al, Phys. Rev. X 3, 031005 (2013)]. The fragile OTSL in the 2+1D example exhibits anomalous chiral edge modes for a natural open boundary condition, and does not require any crystalline symmetries besides lattice translations. Our work paves the way to study fragile topology for general quantum dynamics.

قيم البحث

اقرأ أيضاً

We extend the notion of fragile topology to periodically-driven systems. We demonstrate driving-induced fragile topology in two different models, namely, the Floquet honeycomb model and the Floquet $pi$-flux square-lattice model. In both cases, we di scover a rich phase diagram that includes Floquet fragile topological phases protected by crystalline rotation or mirror symmetries, Floquet Chern insulators, and trivial atomic phases, with distinct boundary features. Remarkably, the transitions between different phases can be feasibly achieved by simply tuning the driving amplitudes, which is a unique feature of driving-enabled topological phenomena. Moreover, corner-localized fractional charges are identified as a ``smoking-gun signal of fragile topology in our systems. Our work paves the way for studying and realizing fragile topology in Floquet systems.
Various exotic topological phases of Floquet systems have been shown to arise from crystalline symmetries. Yet, a general theory for Floquet topology that is applicable to all crystalline symmetry groups is still in need. In this work, we propose suc h a theory for (effectively) non-interacting Floquet crystals. We first introduce quotient winding data to classify the dynamics of the Floquet crystals with equivalent symmetry data, and then construct dynamical symmetry indicators (DSIs) to sufficiently indicate the inherently dynamical Floquet crystals. The DSI and quotient winding data, as well as the symmetry data, are all computationally efficient since they only involve a small number of Bloch momenta. We demonstrate the high efficiency by computing all elementary DSI sets for all spinless and spinful plane groups using the mathematical theory of monoid, and find a large number of different nontrivial classifications, which contain both first-order and higher-order 2+1D anomalous Floquet topological phases. Using the framework, we further find a new 3+1D anomalous Floquet second-order topological insulator (AFSOTI) phase with anomalous chiral hinge modes.
Equilibrium topological phases are robust against weak static disorder but may break down in the strong disorder regime. Here we explore the stability of the quench-induced emergent dynamical topology in the presence of dynamical noise. We develop an analytic theory and show that for weak noise, the quantum dynamics induced by quenching an initial trivial phase to Chern insulating regime exhibits robust emergent topology on certain momentum subspaces called band inversion surfaces (BISs). The dynamical topology is protected by the minimal oscillation frequency over the BISs, mimicking a bulk gap of the dynamical phase. Singularities emerge in the quench dynamics, with the minimal oscillation frequency vanishing on the BISs if increasing noise to critical strength, manifesting a dynamical topological transition, beyond which the emergent topology breaks down. Two types of dynamical transitions are predicted. Interestingly, we predict a sweet spot in the critical transition when noise couples to all three spin components in the same strength, in which case the dynamical topology survives at arbitrarily strong noise regime. This work unveils novel features of the dynamical topology under dynamical noise, which can be probed with control in experiment.
Symmetries crucially underlie the classification of topological phases of matter. Most materials, both natural as well as architectured, possess crystalline symmetries. Recent theoretical works unveiled that these crystalline symmetries can stabilize fragile Bloch bands that challenge our very notion of topology: while answering to the most basic definition of topology, one can trivialize these bands through the addition of trivial Bloch bands. Here, we fully characterize the symmetry properties of the response of an acoustic metamaterial to establish the fragile nature of the low-lying Bloch bands. Additionally, we present a spectral signature in the form of spectral flow under twisted boundary conditions.
Periodically-driven or Floquet systems can realize anomalous topological phenomena that do not exist in any equilibrium states of matter, whose classification and characterization require new theoretical ideas that are beyond the well-established par adigm of static topological phases. In this work, we provide a general framework to understand anomalous Floquet higher-order topological insulators (AFHOTIs), the classification of which has remained a challenging open question. In two dimensions (2D), such AFHOTIs are defined by their robust, symmetry-protected corner modes pinned at special quasienergies, even though all their Floquet bands feature trivial band topology. The corner-mode physics of an AFHOTI is found to be generically indicated by 3D Dirac/Weyl-like topological singularities living in the phase spectrum of the bulk time-evolution operator. Physically, such a phase-band singularity is essentially a footprint of the topological quantum criticality, which separates an AFHOTI from a trivial phase adiabatically connected to a static limit. Strikingly, these singularities feature unconventional dispersion relations that cannot be achieved on any static lattice in 3D, which, nevertheless, resemble the surface physics of 4D topological crystalline insulators. We establish the above higher-order bulk-boundary correspondence through a dimensional reduction technique, which also allows for a systematic classification of 2D AFHOTIs protected by point group symmetries. We demonstrate applications of our theory to two concrete, experimentally feasible models of AFHOTIs protected by $C_2$ and $D_4$ symmetries, respectively. Our work paves the way for a unified theory for classifying and characterizing Floquet topological matters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا