ترغب بنشر مسار تعليمي؟ اضغط هنا

A stacked prism lens concept for next generation hard X-ray telescopes

173   0   0.0 ( 0 )
 نشر من قبل Mark Pearce
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective collecting area, angular resolution, field of view and energy response are fundamental attributes of X-ray telescopes. The performance of state-of-the-art telescopes is currently restricted by Wolter optics, especially for hard X-rays. In this paper, we report the development of a new approach - the Stacked Prism Lens, which is lightweight, modular and has the potential for a significant improvement in effective area, while retaining high angular resolution. The proposed optics is built by stacking discs embedded with prismatic rings, created with photoresist by focused UV lithography. We demonstrate the SPL approach using a prototype lens which was manufactured and characterized at a synchrotron radiation facility. The design of a potential satellite-borne X-ray telescope is outlined and the performance is compared to contemporary missions.


قيم البحث

اقرأ أيضاً

We are currently developing Cadmium Zinc Telluride (CZT) detectors for a next-generation space-borne hard X-ray telescope which can follow up on the highly successful NuSTAR (Nuclear Spectroscopic Telescope Array) mission. Since the launch of NuSTAR in 2012, there have been major advances in the area of X-ray mirrors, and state-of-the-art X-ray mirrors can improve on NuSTARs angular resolution of ~1 arcmin Half Power Diameter (HPD) to 15 or even 5 HPD. Consequently, the size of the detector pixels must be reduced to match this resolution. This paper presents detailed simulations of relatively thin (1 mm thick) CZT detectors with hexagonal pixels at a next-neighbor distance of 150 $mu$m. The simulations account for the non-negligible spatial extent of the deposition of the energy of the incident photon, and include detailed modeling of the spreading of the free charge carriers as they move toward the detector electrodes. We discuss methods to reconstruct the energies of the incident photons, and the locations where the photons hit the detector. We show that the charge recorded in the brightest pixel and six adjacent pixels suffices to obtain excellent energy and spatial resolutions. The simulation results are being used to guide the design of a hybrid application-specific integrated circuit (ASIC)-CZT detector package.
136 - G. Puhlhofer 2012
The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrument ation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.
The imaging and spectral performance of CdTe double-sided strip detectors (CdTe-DSDs) was evaluated for the ASTRO-H mission. The charcterized CdTe-DSDs have a strip pitch of 0.25 mm, an imaging area of 3.2 cm$times$3.2 cm and a thickness of 0.75 mm. The detector was successfully operated at a temperature of $-20^circ$C and with an applied bias voltage of 250 V. By using two-strip events as well as one-strip events for the event reconstruction, a good energy resolution of 2.0 keV at 59.5 keV and a sub-strip spatial resolution was achieved. The hard X-ray and gamma-ray response of CdTe-DSDs is complex due to the properties of CdTe and the small pixel effect. Therefore, one of the issues to investigate is the response of the CdTe-DSD. In order to investigate the spatial dependence of the detector response, we performed fine beam scan experiments at SPring-8, a synchrotron radiation facility. From these experiments, the depth structure of the electric field was determined as well as properties of carriers in the detector and successfully reproduced the experimental data with simulated spectra.
95 - Fan Hu , Zhuo Li , Donglian Xu 2021
Cosmic neutrinos are unique probes of the high energy universe. IceCube has discovered a diffuse astrophysical neutrino flux since 2013, but their origin remains elusive. The potential sources could include, for example, active galactic nuclei, gamma -ray bursts and star burst galaxies. To resolve those scenarios, higher statistics and better angular resolution of astrophysical neutrinos are needed. An optical module with larger photon collection area and more precise timing resolution in a next generation neutrino telescope could help. Silicon photon multipliers (SiPMs), with high quantum efficiency and fast responding time, combining with traditional PMTs, could boost photon detection efficiency and pointing capability. We will present a study on exploring the benefits of combining multiple PMTs and SiPMs in an optical module.
We have been developing event-driven SOI Pixel Detectors, named `XRPIX (X-Ray soiPIXel) based on the silicon-on-insulator (SOI) pixel technology, for the future X-ray astronomical satellite with wide band coverage from 0.5 keV to 40 keV. XRPIX has ev ent trigger output function at each pixel to acquire a good time resolution of a few $mu rm s$ and has Correlated Double Sampling function to reduce electric noises. The good time resolution enables the XRPIX to reduce Non X-ray Background in the high energy band above 10,keV drastically by using anti-coincidence technique with active shield counters surrounding XRPIX. In order to increase the soft X-ray sensitivity, it is necessary to make the dead layer on the X-ray incident surface as thin as possible. Since XRPIX1b, which is a device at the initial stage of development, is a front-illuminated (FI) type of XRPIX, low energy X-ray photons are absorbed in the 8 $rm mu$m thick circuit layer, lowering the sensitivity in the soft X-ray band. Therefore, we developed a back-illuminated (BI) device XRPIX2b, and confirmed high detection efficiency down to 2.6 keV, below which the efficiency is affected by the readout noise. In order to further improve the detection efficiency in the soft X-ray band, we developed a back-illuminated device XRPIX3b with lower readout noise. In this work, we irradiated 2--5 keV X-ray beam collimated to 4 $rm mu m phi$ to the sensor layer side of the XRPIX3b at 6 $rm mu m$ pitch. In this paper, we reported the uniformity of the relative detection efficiency, gain and energy resolution in the subpixel level for the first time. We also confirmed that the variation in the relative detection efficiency at the subpixel level reported by Matsumura et al. has improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا