ﻻ يوجد ملخص باللغة العربية
Cosmic neutrinos are unique probes of the high energy universe. IceCube has discovered a diffuse astrophysical neutrino flux since 2013, but their origin remains elusive. The potential sources could include, for example, active galactic nuclei, gamma-ray bursts and star burst galaxies. To resolve those scenarios, higher statistics and better angular resolution of astrophysical neutrinos are needed. An optical module with larger photon collection area and more precise timing resolution in a next generation neutrino telescope could help. Silicon photon multipliers (SiPMs), with high quantum efficiency and fast responding time, combining with traditional PMTs, could boost photon detection efficiency and pointing capability. We will present a study on exploring the benefits of combining multiple PMTs and SiPMs in an optical module.
The Cherenkov Telescope Array (CTA) Consortium is developing the new generation of ground observatories for the detection of ultra-high energy gamma-rays. The Italian Institute of Nuclear Physics (INFN) is participating to the R&D of a possible solut
The Radar Echo Telescope for Cosmic Rays (RET-CR) is a recently initiated experiment designed to detect the englacial cascade of a cosmic-ray initiated air shower via in-ice radar, toward the goal of a full-scale, next-generation experiment to detect
Effective collecting area, angular resolution, field of view and energy response are fundamental attributes of X-ray telescopes. The performance of state-of-the-art telescopes is currently restricted by Wolter optics, especially for hard X-rays. In t
The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support
The IceCube Neutrino Observatory has revealed the existence of sources of high-energy astrophysical neutrinos. However, identification of the sources is challenging because astrophysical neutrinos are difficult to separate from the background of atmo