ترغب بنشر مسار تعليمي؟ اضغط هنا

Cantor dynamics of renormalizable groups

373   0   0.0 ( 0 )
 نشر من قبل Steven Hurder
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A group $Gamma$ is said to be finitely non-co-Hopfian, or renormalizable, if there exists a self-embedding $varphi colon Gamma to Gamma$ whose image is a proper subgroup of finite index. Such a proper self-embedding is called a renormalization for $Gamma$. In this work, we associate a dynamical system to a renormalization $varphi$ of $Gamma$. The discriminant invariant ${mathcal D}_{varphi}$ of the associated Cantor dynamical system is a profinite group which is a measure of the asymmetries of the dynamical system. If ${mathcal D}_{varphi}$ is a finite group for some renormalization, we show that $Gamma/C_{varphi}$ is virtually nilpotent, where $C_{varphi}$ is the kernel of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show that the action associated to a renormalizable group is virtually renormalizable. We study the properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable Cantor action is an invariant of continuous orbit equivalence. Finally, the notion of a renormalizable Cantor action is related to the notion of a self-replicating group of automorphisms of a rooted tree.



قيم البحث

اقرأ أيضاً

81 - Olga Lukina 2018
In this paper, we study the actions of profinite groups on Cantor sets which arise from representations of Galois groups of certain fields of rational functions. Such representations are associated to polynomials, and they are called profinite iterat ed monodromy groups. We are interested in a topological invariant of such actions called the asymptotic discriminant. In particular, we give a complete classification by whether the asymptotic discriminant is stable or wild in the case when the polynomial generating the representation is quadratic. We also study different ways in which a wild asymptotic discriminant can arise.
In this work, we investigate the dynamical and geometric properties of weak solenoids, as part of the development of a calculus of group chains associated to Cantor minimal actions. The study of the properties of group chains was initiated in the wor ks of McCord 1965 and Fokkink and Oversteegen 2002, to study the problem of determining which weak solenoids are homogeneous continua. We develop an alternative condition for the homogeneity in terms of the Ellis semigroup of the action, then investigate the relationship between non-homogeneity of a weak solenoid and its discriminant invariant, which we introduce in this work. A key part of our study is the construction of new examples that illustrate various subtle properties of group chains that correspond to geometric properties of non-homogeneous weak solenoids.
A group $G$ is said to be periodic if for any $gin G$ there exists a positive integer $n$ with $g^n=id$. We prove that a finitely generated periodic group of homeomorphisms on the 2-torus that preserves a measure $mu$ is finite. Moreover if the group consists in homeomorphisms isotopic to the identity, then it is abelian and acts freely on $mathbb{T}^2$. In the Appendix, we show that every finitely generated 2-group of toral homeomorphisms is finite.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This pap er deals with the dynamics of actions of BS(1,n) on closed orientable surfaces. We exhibit a smooth BS(1,n) action without finite orbits on $TT ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid. We develop a general dynamical study for faithful topological BS(1,n)-actions on closed surfaces $S$. We prove that such actions $<f,h | h circ f circ h^{-1} = f^n>$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty. When $S= TT^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of BS(1,n) on $TT^2$. When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ then $fix(f)$ contains any minimal set.
A group $Gamma$ is said to be periodic if for any $g$ in $Gamma$ there is a positive integer $n$ with $g^n=id$. We first prove that a finitely generated periodic group acting on the 2-sphere $SS^2$ by $C^1$-diffeomorphisms with a finite orbit, is f inite and conjugate to a subgroup of $mathrm{O}(3,R)$ and we use it for proving that a finitely generated periodic group of spherical diffeomorphisms with even bounded orders is finite. Finally, we show that a finitely generated periodic group of homeomorphisms of any orientable compact surface other than the 2-sphere or the 2-torus (which is the purpose of a previous paper of the authors) is finite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا