ﻻ يوجد ملخص باللغة العربية
A group $G$ is said to be periodic if for any $gin G$ there exists a positive integer $n$ with $g^n=id$. We prove that a finitely generated periodic group of homeomorphisms on the 2-torus that preserves a measure $mu$ is finite. Moreover if the group consists in homeomorphisms isotopic to the identity, then it is abelian and acts freely on $mathbb{T}^2$. In the Appendix, we show that every finitely generated 2-group of toral homeomorphisms is finite.
A group $Gamma$ is said to be periodic if for any $g$ in $Gamma$ there is a positive integer $n$ with $g^n=id$. We first prove that a finitely generated periodic group acting on the 2-sphere $SS^2$ by $C^1$-diffeomorphisms with a finite orbit, is f
We propose a method for proving that a toral partition into polygons is a Markov partition for a given toral $mathbb{Z}^2$-rotation, i.e., $mathbb{Z}^2$-action defined by rotations on a torus. If $mathcal{X}_{mathcal{P},R}$ denotes the symbolic dynam
We show in prime dimension that for two non-commuting totally irreducible toral automorphisms the set of points that equidistribute under the first map but have non-dense orbit under the second has full Hausdorff dimension. In non-prime dimension the
We construct different types of quasiperiodically forced circle homeomorphisms with transitive but non-minimal dynamics. Concerning the recent Poincare-like classification for this class of maps of Jaeger-Stark, we demonstrate that transitive but non
We study the polynomial entropy of the wandering part of any invertible dynamical system on a compact metric space. As an application we compute the polynomial entropy of Brouwer homeomorphisms (fixed point free orientation preserving homeomorphisms