ترغب بنشر مسار تعليمي؟ اضغط هنا

Burnside problem for groups of homeomorphisms of compact surfaces

82   0   0.0 ( 0 )
 نشر من قبل Isabelle Liousse
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A group $Gamma$ is said to be periodic if for any $g$ in $Gamma$ there is a positive integer $n$ with $g^n=id$. We first prove that a finitely generated periodic group acting on the 2-sphere $SS^2$ by $C^1$-diffeomorphisms with a finite orbit, is finite and conjugate to a subgroup of $mathrm{O}(3,R)$ and we use it for proving that a finitely generated periodic group of spherical diffeomorphisms with even bounded orders is finite. Finally, we show that a finitely generated periodic group of homeomorphisms of any orientable compact surface other than the 2-sphere or the 2-torus (which is the purpose of a previous paper of the authors) is finite.

قيم البحث

اقرأ أيضاً

A group $G$ is said to be periodic if for any $gin G$ there exists a positive integer $n$ with $g^n=id$. We prove that a finitely generated periodic group of homeomorphisms on the 2-torus that preserves a measure $mu$ is finite. Moreover if the group consists in homeomorphisms isotopic to the identity, then it is abelian and acts freely on $mathbb{T}^2$. In the Appendix, we show that every finitely generated 2-group of toral homeomorphisms is finite.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This pap er deals with the dynamics of actions of BS(1,n) on closed orientable surfaces. We exhibit a smooth BS(1,n) action without finite orbits on $TT ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid. We develop a general dynamical study for faithful topological BS(1,n)-actions on closed surfaces $S$. We prove that such actions $<f,h | h circ f circ h^{-1} = f^n>$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty. When $S= TT^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of BS(1,n) on $TT^2$. When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ then $fix(f)$ contains any minimal set.
113 - John Guaschi 2018
Let M be a compact surface, either orientable or non-orientable. We study the lower central and derived series of the braid and pure braid groups of M in order to determine the values of n for which B_n(M) and P_n(M) are residually nilpotent or resid ually soluble. First, we solve this problem for the case where M is the 2-torus. We then give a general description of these series for an arbitrary semi-direct product that allows us to calculate explicitly the lower central series of P_2(K), where K is the Klein bottle, and to give an estimate for the derived series of P_n(K). Finally, if M is a non-orientable compact surface without boundary, we determine the values of n for which B_n(M) is residually nilpotent or residually soluble in the cases that were not already known in the literature.
The simplest example of an infinite Burnside group arises in the class of automaton groups. However there is no known example of such a group generated by a reversible Mealy automaton. It has been proved that, for a connected automaton of size at mos t~3, or when the automaton is not bireversible, the generated group cannot be Burnside infinite. In this paper, we extend these results to automata with bigger stateset, proving that, if a connected reversible automaton has a prime number of states, it cannot generate an infinite Burnside group.
A group $Gamma$ is said to be finitely non-co-Hopfian, or renormalizable, if there exists a self-embedding $varphi colon Gamma to Gamma$ whose image is a proper subgroup of finite index. Such a proper self-embedding is called a renormalization for $G amma$. In this work, we associate a dynamical system to a renormalization $varphi$ of $Gamma$. The discriminant invariant ${mathcal D}_{varphi}$ of the associated Cantor dynamical system is a profinite group which is a measure of the asymmetries of the dynamical system. If ${mathcal D}_{varphi}$ is a finite group for some renormalization, we show that $Gamma/C_{varphi}$ is virtually nilpotent, where $C_{varphi}$ is the kernel of the action map. We introduce the notion of a (virtually) renormalizable Cantor action, and show that the action associated to a renormalizable group is virtually renormalizable. We study the properties of virtually renormalizable Cantor actions, and show that virtual renormalizability is an invariant of continuous orbit equivalence. Moreover, the discriminant invariant of a renormalizable Cantor action is an invariant of continuous orbit equivalence. Finally, the notion of a renormalizable Cantor action is related to the notion of a self-replicating group of automorphisms of a rooted tree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا